Two classes of exact solutions in the linear elastodynamics of transversely isotropic solids

Kumbakonam R. Rajagopal1, Giuseppe Saccomandi2, Luigi Vergori2
1Department of Mechanical Engineering, Texas A&M University, College Station, USA
2Dipartimento di Ingegneria, Università degli Studi di Perugia, Perugia, Italy

Tóm tắt

Due to the formal resemblance of some models for the Cauchy stress tensor of elastic solids and viscous fluids, some classes of exact solutions for the equations governing the flows in Navier–Stokes fluids have been generalized to linear and nonlinear elastodynamics. In this paper, we study the conditions under which two special classes of generalized Beltrami flows, the vortices in lattice form and Kelvin’s cat’s eye solutions, are solutions of the equations governing the motions in a linearly elastic transversely isotropic solid.

Từ khóa


Tài liệu tham khảo

Heber, G., Leimanis, E.: The general problem of the motion of coupled rigid bodies about a fixed point. ZAMM J. Appl. Math. Mech. Zeitschrift für Angewandte Mathematik und Mechanik 46(5), 332–333 (1966). https://doi.org/10.1002/zamm.19660460539 Berker, R.: Intégration des équations du mouvement d’un fluide visqueux incompressible. Handbuch der Physik 3, 1–384 (1963). https://doi.org/10.1007/978-3-662-10109-4_1 Nemenyi, P.F.: Recent developments in inverse and semi-inverse methods in the mechanics of continua1. Adv. Appl. Mech. 2, 123–151 (1951) Truesdell, C., Toupin, R.: The Classical Field Theories. Handbuch der Physik 2, 226–858 (1960). https://doi.org/10.1007/978-3-642-45943-6_2 Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, pp. 1–579. Springer, Berlin, Heidelberg (1992). https://doi.org/10.1007/978-3-662-13183-1_1 Coleman, B.D., Truesdell, C.A.: Homogeneous motions of incompressible materials. Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik 45, 547–551 (1965) Pucci, E., Saccomandi, G.: Elliptical flows perturbed by shear waves. Ricerche Mat. 67, 509–524 (2018) Holm, D.D.: Gyroscopic analog for collective motion of a stratified fluid. J. Math. Anal. Appl. 117(1), 57–80 (1986). https://doi.org/10.1016/0022-247X(86)90248-9 Craik, A.D.D.: Time-dependent solutions of the Navier–Stokes equations for spatially-uniform velocity gradients. Proc. R. Soc. Edinb. Sect. A Math. 124(1), 127–136 (1994). https://doi.org/10.1017/S0308210500029231 Rajagopal, K.R.: On a class of solutions in elastodynamics. In: Proc. R. Irish Acad. Sect. A Math. Phys. Sci. 90A(2), 205–214 (1990) Rajagopal, K.R., Wineman, A.S.: New exact solutions in non-linear elasticity. Int. J. Eng. Sci. 23(2), 217–234 (1985). https://doi.org/10.1016/0020-7225(85)90076-X Berker, R.: A new solution of the Navier–Stokes equation for the motion of a fluid contained between two parallel plates rotating about the same axis. Arch. Mech. 31(2), 265–280 (1979) Fu, D., Rajagopal, K.R., Szeri, A.Z.: Non-homogeneous deformations in a wedge of Mooney–Rivlin material. Int. J. Non-Linear Mech. 25(4), 375–387 (1990). https://doi.org/10.1016/0020-7462(90)90026-6 Taylor, G.I: LXXV. On the decay of vortices in a viscous fluid. Lond. Edinb. Dublin Philos. Mag. J. Sci. 46(274), 671–674 (1923). https://doi.org/10.1080/14786442308634295 Kelvin, W.T.: On a disturbing infinity in lord Rayleigh’s solution for waves in a plane vortex stratum. Nature 23, 45–46 (1880) Kaptsov, O.V.: New solutions for two-dimensional stationary Euler equations. Prikladnaia Matematika i Mekhanika 54, 409–415 (1990) Spencer, A.J.M.: In: Spencer, A.J.M. (ed.) Constitutive Theory for Strongly Anisotropic Solids, pp. 1–32. Springer, Vienna (1984). https://doi.org/10.1007/978-3-7091-4336-0_1 Coco, M., Saccomandi, G.: Superposing plane strain on anti-plane shear deformations in a special class of fiber-reinforced incompressible hyperelastic materials. Int. J. Solids Struct. 256, 111994 (2022). https://doi.org/10.1016/j.ijsolstr.2022.111994 Grine, F., Saccomandi, G., Arfaoui, M.: Elastic machines: a non standard use of the axial shear of linear transversely isotropic elastic cylinders. Int. J. Solids Struct. 185–186, 57–64 (2020). https://doi.org/10.1016/j.ijsolstr.2019.08.025 Horgan, C.O., Murphy, J.G., Saccomandi, G.: The complex mechanical response of anisotropic materials in simple experiments. Int. J. Non-Linear Mech. 106, 274–279 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.05.025 Destrade, M., Ogden, R.W., Saccomandi, G.: Small amplitude waves and stability for a pre-stressed viscoelastic solid. Z. Angew. Math. Phys. 60, 511–528 (2009). https://doi.org/10.1007/s00033-008-7147-6 Saccomandi, G., Speranzini, E., Zurlo, G.: Piezoelectric machines: achieving non-standard actuation and sensing properties in poled ceramics. Q. J. Mech. Appl. Math. 74(2), 159–172 (2021). https://doi.org/10.1093/qjmam/hbab002