Two- and three-dimensional QSAR studies on hURAT1 inhibitors with flexible linkers: topomer CoMFA and HQSAR

Molecular Diversity - Tập 24 Số 1 - Trang 141-154 - 2020
Tingting Zhao1, Zean Zhao1, Fengting Lu1, Shan Chang2, Jiajie Zhang1, Jianxin Pang1, Yuanxin Tian1
1Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
2Institutes of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Terkeltaub R (2010) Update on gout: new therapeutic strategies and options. Nat Rev Rheumatol 6(1):30–38. https://doi.org/10.1038/nrrheum.2009.236

Richette P, Doherty M, Pascual E, Barskova V, Becce F, Castaneda-Sanabria J, Coyfish M, Guillo S, Jansen TL, Janssens H, Liote F, Mallen C, Nuki G, Perez-Ruiz F, Pimentao J, Punzi L, Pywell T, So A, Tausche AK, Uhlig T, Zavada J, Zhang W, Tubach F, Bardin T (2017) 2016 updated EULAR evidence-based recommendations for the management of gout. Ann Rheum Dis 76(1):29–42. https://doi.org/10.1136/annrheumdis-2016-209707

Maesaka JK, Fishbane S (1998) Regulation of renal urate excretion: a critical review. Am J Kidney Dis 32(6):917–933. https://doi.org/10.1016/S0272-6386(98)70067-8

Anzai N, Jutabha P, Endou H (2010) Renal solute transporters and their relevance to serum urate disorder. Curr Hypertens Rev 6(3):148–154. https://doi.org/10.2174/157340210791936732

Enomoto A, Kimura H, Chairoungdua A et al (2002) Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417(6887):447–452. https://doi.org/10.1038/nature742

Vazquez-Mellado J, Jimenez-Vaca AL, Cuevas-Covarrubias S et al (2007) Molecular analysis of the SLC22A12 (URAT1) gene in patients with primary gout. Rheumatology (Oxford) 46(2):215–219. https://doi.org/10.1093/rheumatology/kel205

Reginato AM, Mount D, Yang I et al (2012) The genetics of hyperuricaemia and gout. Nat Rev Rheumatol 8(10):610–621. https://doi.org/10.1038/nrrheum.2012.144

Cai W, Liu W, Liu C, Wang J, Zhao G (2017) A systematic review of uric acid transporter 1 (URAT1) inhibitors for the treatment of hyperuricemia and gout and an insight into the structure-activity relationship (SAR). Chin J Struct Chem 36(6):897–910. https://doi.org/10.14102/j.cnki.02545861.2011-1596

Kong LD, Pan Y (2016) Urate transporter URAT1 inhibitors: a patent review (2012–2015). Expert Opin Ther Pat 26(10):1. https://doi.org/10.1080/13543776.2016.1213243

Wempe MF, Quade B, Jutabha P, Iwen T, Frick M, Rice PJ, Wakui S, Endou H (2011) Human uric acid transporter 1 (hURAT1): an inhibitor structure-activity relationship (SAR) study. Nucleosides, Nucleotides Nucleic Acids 30(12):1312–1323. https://doi.org/10.1080/15257770.2011.594031

Wempe MF, Lightner JW, Miller B, Iwen TJ, Rice PJ, Wakui S, Anzai N, Jutabha P, Endou H (2012) Potent human uric acid transporter 1 inhibitors: in vitro and in vivo metabolism and pharmacokinetic studies. Drug Des Dev Ther 6:323–339. https://doi.org/10.2147/DDDT.S35805

Peng J, Hu Q, Gu C, Liu B, Jin F, Yuan J, Feng J, Zhang L, Lan J, Dong Q (2016) Discovery of potent and orally bioavailable inhibitors of Human Uric Acid Transporter 1 (hURAT1) and binding mode prediction using homology model. Bioorg Med Chem Lett 26(2):277–282

Yong T, Xie Y, Chen S, Chen D, Su J, Jiao C, Hu H, Xiao C (2018) Hypouricemic effect of Grifola frondosa on hyperuricemic mice and virtual screening of bioactives by 3D QSAR pharmacophore modeling. J Funct Foods 40:582–588. https://doi.org/10.1016/j.jff.2017.11.049

Cai W, Wu J, Liu W, Xie Y, Liu Y, Zhang S, Xu W, Tang L, Wang J, Zhao G (2018) Systematic structure-activity relationship (SAR) exploration of diarylmethane backbone and discovery of a highly potent novel uric acid transporter 1 (URAT1) inhibitor. Molecules 23(2):252. https://doi.org/10.3390/molecules23020252

Zhang X, Wu J, Liu W, Liu Y, Xie Y, Shang Q, Zhou Z, Xu W, Tang L, Wang J, Zhao G (2017) Discovery of flexible naphthyltriazolylmethane-based thioacetic acids as highly active uric acid transporter 1 (URAT1) inhibitors for the treatment of hyperuricemia of gout. Med Chem 13(3):260–281. https://doi.org/10.2174/1573406412666160915163002

Tian H, Liu W, Zhou Z, Shang Q, Liu Y, Xie Y, Liu C, Xu W, Tang L, Wang J, Zhao G (2016) Discovery of a flexible triazolylbutanoic acid as a highly potent uric acid transporter 1 (URAT1) inhibitor. Molecules 21(11):1543. https://doi.org/10.3390/molecules21111543

Ahn SO, Ohtomo S, Kiyokawa J, Nakagawa T, Yamane M, Lee KJ, Kim KH, Kim BH, Tanaka J, Kawabe Y, Horiba N (2016) Stronger uricosuric effects of the novel selective URAT1 inhibitor UR-1102 lowered plasma urate in tufted capuchin monkeys to a greater extent than benzbromarone. J Pharmacol Exp Ther 357(1):157–166. https://doi.org/10.1124/jpet.115.231647

Dearden JC (2016) The history and development of quantitative structure-activity relationships (QSARs). Int J Quant Struct-Prop Relationsh 1:1–44

Roy K, Kar S, Das RN (2015) Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. Academic Press, London. https://doi.org/10.1016/B978-0-12-801505-6.00016-8

Yang X-L, Zhou Y, Liu X-L (2013) Hologram quantitative structure–activity relationship studies on 1-(5-carboxyindol-1-yl) propan-2-one inhibitors of human cytosolic phospholipase A2α. Med Chem Res 23(3):1512–1518. https://doi.org/10.1007/s00044-013-0763-5

Maltarollo VG, Honorio K, Emery FS, Ganesan A, Trossini GH (2015) Hologram quantitative structure-activity relationship and comparative molecular interaction field analysis of aminothiazole and thiazolesulfonamide as reversible LSD-1 inhibitors. Future Med Chem 7(11):1381–1394. https://doi.org/10.4155/fmc.15.68

Salum LB, Andricopulo AD (2009) Fragment-based QSAR: perspectives in drug design. Mol Divers 13(3):277–285. https://doi.org/10.1007/s11030-009-9112-5

Babu S, Rupa M, Nagarajan SK, Sohn H, Madhavan T (2016) Molecular modeling study on diazine indole acetic acid derivatives for CRTH2 inhibitory activity. Comb Chem High Throughput Screen 19(6):444–460. https://doi.org/10.2174/1386207319666160502123759

Cramer R, Patterson D, Bunce J (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110(18):5959–5967. https://doi.org/10.1002/chin.198851058

Cramer RD (2012) R-group template CoMFA combines benefits of “ad hoc” and topomer alignments using 3D-QSAR for lead optimization. J Comput Aided Mol Des 26(7):805–819. https://doi.org/10.1007/s10822-012-9583-9

Liang T, Yan C, Yang L, Hu M, Ban S, Li Q (2014) 3D-QSAR studies of 8-substituted chromen-4-one-2-carboxylic acid derivatives as potent agonists for the orphan G protein-coupled receptor 35. Med Chem Res 24(5):2183–2194. https://doi.org/10.1007/s00044-014-1287-3

Araujo SC, Maltarollo VG, Honorio KM (2013) Computational studies of TGF-betaRI (ALK-5) inhibitors: analysis of the binding interactions between ligand-receptor using 2D and 3D techniques. Eur J Pharm Sci 49(4):542–549. https://doi.org/10.1016/j.ejps.2013.05.015

Wempe MF, Jutabha P, Quade B, Iwen TJ, Frick MM, Ross IR, Rice PJ, Anzai N, Endou H (2011) Developing potent human uric acid transporter 1 (hURAT1) inhibitors. J Med Chem 54(8):2701–2713. https://doi.org/10.1021/jm1015022

Sato Pharmaceutical Co, Ltd. US8987473 (2015)

Clark M, Cramer RD, Opdenbosch NV (1989) Validation of the general purpose tripos 5.2 force field. Comput Chem 10(8):982–1012. https://doi.org/10.1002/jcc.540100804

William P-P, Judith AS (1967) A brief review and table of semiempirical parameters used in the Hueckel molecular orbital method. J Chem Eng 12:235–246. https://doi.org/10.1021/je60033a020

Zaheer UH, Sajda A, Abdullah AM et al (2016) 3D-QSAR studies on barbituric acid derivatives as urease inhibitors and the effect of charges on the quality of a model. Int J Mol Sci 17(5):657. https://doi.org/10.3390/ijms17050657

Huang D, Liu Y, Shi B, Li Y, Wang G, Liang G (2013) Comprehensive 3D-QSAR and binding mode of BACE-1 inhibitors using R-group search and molecular docking. J Mol Graph Model 45(18):65–83. https://doi.org/10.1016/j.jmgm.2013.08.003

Flower DR (1998) On the properties of bit string-based measures of chemical similarity. J Chem Inf Comput Sci 38(3):379–386. https://doi.org/10.1021/ci970437z

Ferreira LG, Andricopulo AD (2013) Inhibitors of Trypanosoma brucei trypanothione reductase: comparative molecular field analysis modeling and structural basis for selective inhibition. Future Med Chem 5(15):1753–1762. https://doi.org/10.4155/fmc.13.140

Cramer RD, Cruz P, Stahl G et al (2009) Virtual screening for R-groups, including predicted pIC50 contributions, within large structural databases, using topomer CoMFA. J Chem Inf Model 40(15):2180–2195. https://doi.org/10.1021/ci8001556

Laskowski RA, MacArthur MW, Moss DS, Thorton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291. https://doi.org/10.1107/S0021889892009944

Wiederstein M, Sippl M (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:407–410. https://doi.org/10.1093/nar/gkm290

Wold S, Sjöström M, Eriksson L (2002) Partial least squares projections to latent structures (PLS) in chemistry. Wiley, London. https://doi.org/10.1002/0470845015.cpa012

Mitra I, Saha A, Roy K (2010) Exploring quantitative structure–activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants. Mol Simul 36(13):1067–1079. https://doi.org/10.1080/08927022.2010.503326

Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20(4):269–276. https://doi.org/10.1016/S1093-3263(01)00123-1

Ojha PK, Mitra I, Das RN, Roy K (2011) Further exploring rm2 metrics for validation of QSPR models. Chemometr Intell Lab Syst 107(1):194–205. https://doi.org/10.1016/j.chemolab.2011.03.011

Roy K, Kar S (2014) The rm2 metrics and regression through origin approach: reliable and useful validation tools for predictive QSAR models (Commentary on ‘Is regression through origin useful in external validation of QSAR models?’). Eur J Pharm Sci 62:111–114. https://doi.org/10.1016/j.ejps.2014.05.019

SchC Ebert RU, Chen J, Wang B (2008) External validation and prediction employing the predictive squared correlation coefficient test set activity mean versus training set activity mean. J Chem Inf Model 48(11):2140–2145. https://doi.org/10.1021/ci800253u

Chirico N, Gramatica P (2011) Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J Chem Inf Model 51(9):2320–2335. https://doi.org/10.1021/ci200211n

Roy K, Das RN, Ambure P, Aher RB (2016) Be aware of error measures. Further studies on validation of predictive QSAR models. Chemom Intell Lab Syst 152:18–33. https://doi.org/10.1016/j.chemolab.2016.01.008

Wu T, Chen J, Dong S, Li H, Cao Y, Tian Y, Fu W, Zhou P, Xi B, Pang J (2017) Identification and characterization of a potent and selective inhibitor of human urate transporter 1. Pharmacol Rep 69(5):1103–1112. https://doi.org/10.1016/j.pharep.2017.04.022

Wang H, Feng Y, Wang Q (2016) Cysteine-based protein adduction by epoxide-derived metabolite(s) of benzbromarone. Chem Res Toxicol 29(12):2145–2152. https://doi.org/10.1021/acs.chemrestox.6b00275

Jiangsu Atom Bioscience and Pharmaceutical Co., Ltd. W0 2017/041732 A1

Fan C, Chen H, Li C (2017) Synthesis of naphthyl triazole carboxylic acid compounds and their inhibitory activities against URAT1. Drugs Clinic 32:1165–1170. https://doi.org/10.7501/j.issn.1674-5515.2017.07.001

Xia C, Wei S, Li S, Wang S (2015) Design, synthesis and biological activity of a novel uric acid transporter 1(URAT1)inhibitor. Chem Reag 37(11):969–975. https://doi.org/10.13822/j.cnki.hxsj.2015.11.003