Two- and three-dimensional QSAR studies on hURAT1 inhibitors with flexible linkers: topomer CoMFA and HQSAR
Tóm tắt
Từ khóa
Tài liệu tham khảo
Terkeltaub R (2010) Update on gout: new therapeutic strategies and options. Nat Rev Rheumatol 6(1):30–38. https://doi.org/10.1038/nrrheum.2009.236
Richette P, Doherty M, Pascual E, Barskova V, Becce F, Castaneda-Sanabria J, Coyfish M, Guillo S, Jansen TL, Janssens H, Liote F, Mallen C, Nuki G, Perez-Ruiz F, Pimentao J, Punzi L, Pywell T, So A, Tausche AK, Uhlig T, Zavada J, Zhang W, Tubach F, Bardin T (2017) 2016 updated EULAR evidence-based recommendations for the management of gout. Ann Rheum Dis 76(1):29–42. https://doi.org/10.1136/annrheumdis-2016-209707
Maesaka JK, Fishbane S (1998) Regulation of renal urate excretion: a critical review. Am J Kidney Dis 32(6):917–933. https://doi.org/10.1016/S0272-6386(98)70067-8
Anzai N, Jutabha P, Endou H (2010) Renal solute transporters and their relevance to serum urate disorder. Curr Hypertens Rev 6(3):148–154. https://doi.org/10.2174/157340210791936732
Enomoto A, Kimura H, Chairoungdua A et al (2002) Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417(6887):447–452. https://doi.org/10.1038/nature742
Vazquez-Mellado J, Jimenez-Vaca AL, Cuevas-Covarrubias S et al (2007) Molecular analysis of the SLC22A12 (URAT1) gene in patients with primary gout. Rheumatology (Oxford) 46(2):215–219. https://doi.org/10.1093/rheumatology/kel205
Reginato AM, Mount D, Yang I et al (2012) The genetics of hyperuricaemia and gout. Nat Rev Rheumatol 8(10):610–621. https://doi.org/10.1038/nrrheum.2012.144
Cai W, Liu W, Liu C, Wang J, Zhao G (2017) A systematic review of uric acid transporter 1 (URAT1) inhibitors for the treatment of hyperuricemia and gout and an insight into the structure-activity relationship (SAR). Chin J Struct Chem 36(6):897–910. https://doi.org/10.14102/j.cnki.02545861.2011-1596
Kong LD, Pan Y (2016) Urate transporter URAT1 inhibitors: a patent review (2012–2015). Expert Opin Ther Pat 26(10):1. https://doi.org/10.1080/13543776.2016.1213243
Wempe MF, Quade B, Jutabha P, Iwen T, Frick M, Rice PJ, Wakui S, Endou H (2011) Human uric acid transporter 1 (hURAT1): an inhibitor structure-activity relationship (SAR) study. Nucleosides, Nucleotides Nucleic Acids 30(12):1312–1323. https://doi.org/10.1080/15257770.2011.594031
Wempe MF, Lightner JW, Miller B, Iwen TJ, Rice PJ, Wakui S, Anzai N, Jutabha P, Endou H (2012) Potent human uric acid transporter 1 inhibitors: in vitro and in vivo metabolism and pharmacokinetic studies. Drug Des Dev Ther 6:323–339. https://doi.org/10.2147/DDDT.S35805
Peng J, Hu Q, Gu C, Liu B, Jin F, Yuan J, Feng J, Zhang L, Lan J, Dong Q (2016) Discovery of potent and orally bioavailable inhibitors of Human Uric Acid Transporter 1 (hURAT1) and binding mode prediction using homology model. Bioorg Med Chem Lett 26(2):277–282
Yong T, Xie Y, Chen S, Chen D, Su J, Jiao C, Hu H, Xiao C (2018) Hypouricemic effect of Grifola frondosa on hyperuricemic mice and virtual screening of bioactives by 3D QSAR pharmacophore modeling. J Funct Foods 40:582–588. https://doi.org/10.1016/j.jff.2017.11.049
Cai W, Wu J, Liu W, Xie Y, Liu Y, Zhang S, Xu W, Tang L, Wang J, Zhao G (2018) Systematic structure-activity relationship (SAR) exploration of diarylmethane backbone and discovery of a highly potent novel uric acid transporter 1 (URAT1) inhibitor. Molecules 23(2):252. https://doi.org/10.3390/molecules23020252
Zhang X, Wu J, Liu W, Liu Y, Xie Y, Shang Q, Zhou Z, Xu W, Tang L, Wang J, Zhao G (2017) Discovery of flexible naphthyltriazolylmethane-based thioacetic acids as highly active uric acid transporter 1 (URAT1) inhibitors for the treatment of hyperuricemia of gout. Med Chem 13(3):260–281. https://doi.org/10.2174/1573406412666160915163002
Tian H, Liu W, Zhou Z, Shang Q, Liu Y, Xie Y, Liu C, Xu W, Tang L, Wang J, Zhao G (2016) Discovery of a flexible triazolylbutanoic acid as a highly potent uric acid transporter 1 (URAT1) inhibitor. Molecules 21(11):1543. https://doi.org/10.3390/molecules21111543
Ahn SO, Ohtomo S, Kiyokawa J, Nakagawa T, Yamane M, Lee KJ, Kim KH, Kim BH, Tanaka J, Kawabe Y, Horiba N (2016) Stronger uricosuric effects of the novel selective URAT1 inhibitor UR-1102 lowered plasma urate in tufted capuchin monkeys to a greater extent than benzbromarone. J Pharmacol Exp Ther 357(1):157–166. https://doi.org/10.1124/jpet.115.231647
Dearden JC (2016) The history and development of quantitative structure-activity relationships (QSARs). Int J Quant Struct-Prop Relationsh 1:1–44
Roy K, Kar S, Das RN (2015) Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. Academic Press, London. https://doi.org/10.1016/B978-0-12-801505-6.00016-8
Yang X-L, Zhou Y, Liu X-L (2013) Hologram quantitative structure–activity relationship studies on 1-(5-carboxyindol-1-yl) propan-2-one inhibitors of human cytosolic phospholipase A2α. Med Chem Res 23(3):1512–1518. https://doi.org/10.1007/s00044-013-0763-5
Maltarollo VG, Honorio K, Emery FS, Ganesan A, Trossini GH (2015) Hologram quantitative structure-activity relationship and comparative molecular interaction field analysis of aminothiazole and thiazolesulfonamide as reversible LSD-1 inhibitors. Future Med Chem 7(11):1381–1394. https://doi.org/10.4155/fmc.15.68
Salum LB, Andricopulo AD (2009) Fragment-based QSAR: perspectives in drug design. Mol Divers 13(3):277–285. https://doi.org/10.1007/s11030-009-9112-5
Babu S, Rupa M, Nagarajan SK, Sohn H, Madhavan T (2016) Molecular modeling study on diazine indole acetic acid derivatives for CRTH2 inhibitory activity. Comb Chem High Throughput Screen 19(6):444–460. https://doi.org/10.2174/1386207319666160502123759
Cramer R, Patterson D, Bunce J (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110(18):5959–5967. https://doi.org/10.1002/chin.198851058
Cramer RD (2012) R-group template CoMFA combines benefits of “ad hoc” and topomer alignments using 3D-QSAR for lead optimization. J Comput Aided Mol Des 26(7):805–819. https://doi.org/10.1007/s10822-012-9583-9
Liang T, Yan C, Yang L, Hu M, Ban S, Li Q (2014) 3D-QSAR studies of 8-substituted chromen-4-one-2-carboxylic acid derivatives as potent agonists for the orphan G protein-coupled receptor 35. Med Chem Res 24(5):2183–2194. https://doi.org/10.1007/s00044-014-1287-3
Araujo SC, Maltarollo VG, Honorio KM (2013) Computational studies of TGF-betaRI (ALK-5) inhibitors: analysis of the binding interactions between ligand-receptor using 2D and 3D techniques. Eur J Pharm Sci 49(4):542–549. https://doi.org/10.1016/j.ejps.2013.05.015
Wempe MF, Jutabha P, Quade B, Iwen TJ, Frick MM, Ross IR, Rice PJ, Anzai N, Endou H (2011) Developing potent human uric acid transporter 1 (hURAT1) inhibitors. J Med Chem 54(8):2701–2713. https://doi.org/10.1021/jm1015022
Sato Pharmaceutical Co, Ltd. US8987473 (2015)
Clark M, Cramer RD, Opdenbosch NV (1989) Validation of the general purpose tripos 5.2 force field. Comput Chem 10(8):982–1012. https://doi.org/10.1002/jcc.540100804
William P-P, Judith AS (1967) A brief review and table of semiempirical parameters used in the Hueckel molecular orbital method. J Chem Eng 12:235–246. https://doi.org/10.1021/je60033a020
Zaheer UH, Sajda A, Abdullah AM et al (2016) 3D-QSAR studies on barbituric acid derivatives as urease inhibitors and the effect of charges on the quality of a model. Int J Mol Sci 17(5):657. https://doi.org/10.3390/ijms17050657
Huang D, Liu Y, Shi B, Li Y, Wang G, Liang G (2013) Comprehensive 3D-QSAR and binding mode of BACE-1 inhibitors using R-group search and molecular docking. J Mol Graph Model 45(18):65–83. https://doi.org/10.1016/j.jmgm.2013.08.003
Flower DR (1998) On the properties of bit string-based measures of chemical similarity. J Chem Inf Comput Sci 38(3):379–386. https://doi.org/10.1021/ci970437z
Ferreira LG, Andricopulo AD (2013) Inhibitors of Trypanosoma brucei trypanothione reductase: comparative molecular field analysis modeling and structural basis for selective inhibition. Future Med Chem 5(15):1753–1762. https://doi.org/10.4155/fmc.13.140
Cramer RD, Cruz P, Stahl G et al (2009) Virtual screening for R-groups, including predicted pIC50 contributions, within large structural databases, using topomer CoMFA. J Chem Inf Model 40(15):2180–2195. https://doi.org/10.1021/ci8001556
Laskowski RA, MacArthur MW, Moss DS, Thorton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291. https://doi.org/10.1107/S0021889892009944
Wiederstein M, Sippl M (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:407–410. https://doi.org/10.1093/nar/gkm290
Wold S, Sjöström M, Eriksson L (2002) Partial least squares projections to latent structures (PLS) in chemistry. Wiley, London. https://doi.org/10.1002/0470845015.cpa012
Mitra I, Saha A, Roy K (2010) Exploring quantitative structure–activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants. Mol Simul 36(13):1067–1079. https://doi.org/10.1080/08927022.2010.503326
Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20(4):269–276. https://doi.org/10.1016/S1093-3263(01)00123-1
Ojha PK, Mitra I, Das RN, Roy K (2011) Further exploring rm2 metrics for validation of QSPR models. Chemometr Intell Lab Syst 107(1):194–205. https://doi.org/10.1016/j.chemolab.2011.03.011
Roy K, Kar S (2014) The rm2 metrics and regression through origin approach: reliable and useful validation tools for predictive QSAR models (Commentary on ‘Is regression through origin useful in external validation of QSAR models?’). Eur J Pharm Sci 62:111–114. https://doi.org/10.1016/j.ejps.2014.05.019
SchC Ebert RU, Chen J, Wang B (2008) External validation and prediction employing the predictive squared correlation coefficient test set activity mean versus training set activity mean. J Chem Inf Model 48(11):2140–2145. https://doi.org/10.1021/ci800253u
Chirico N, Gramatica P (2011) Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J Chem Inf Model 51(9):2320–2335. https://doi.org/10.1021/ci200211n
Roy K, Das RN, Ambure P, Aher RB (2016) Be aware of error measures. Further studies on validation of predictive QSAR models. Chemom Intell Lab Syst 152:18–33. https://doi.org/10.1016/j.chemolab.2016.01.008
Wu T, Chen J, Dong S, Li H, Cao Y, Tian Y, Fu W, Zhou P, Xi B, Pang J (2017) Identification and characterization of a potent and selective inhibitor of human urate transporter 1. Pharmacol Rep 69(5):1103–1112. https://doi.org/10.1016/j.pharep.2017.04.022
Wang H, Feng Y, Wang Q (2016) Cysteine-based protein adduction by epoxide-derived metabolite(s) of benzbromarone. Chem Res Toxicol 29(12):2145–2152. https://doi.org/10.1021/acs.chemrestox.6b00275
Jiangsu Atom Bioscience and Pharmaceutical Co., Ltd. W0 2017/041732 A1
Fan C, Chen H, Li C (2017) Synthesis of naphthyl triazole carboxylic acid compounds and their inhibitory activities against URAT1. Drugs Clinic 32:1165–1170. https://doi.org/10.7501/j.issn.1674-5515.2017.07.001