Two Theorems on Hunt’s Hypothesis (H) for Markov Processes

Springer Science and Business Media LLC - Tập 55 - Trang 29-52 - 2020
Ze-Chun Hu1, Wei Sun2, Li-Fei Wang3
1College of Mathematics, Sichuan University, Chengdu, China
2Department of Mathematics and Statistics, Concordia University, Montreal, Canada
3Postdoctoral Research Station of Mathematics & School of Mathematical Sciences, Hebei Normal University, Shijiazhuang, China

Tóm tắt

Hunt’s hypothesis (H) and the related Getoor’s conjecture is one of the most important problems in the basic theory of Markov processes. In this paper, we investigate the invariance of Hunt’s hypothesis (H) for Markov processes under two classes of transformations, which are change of measure and subordination. Our first theorem shows that for two standard processes (Xt) and (Yt), if (Xt) satisfies (H) and (Yt) is locally absolutely continuous with respect to (Xt), then (Yt) satisfies (H). Our second theorem shows that a standard process (Xt) satisfies (H) if and only if $(X_{\tau _{t}})$ satisfies (H) for some (and hence any) subordinator (τt) which is independent of (Xt) and has a positive drift coefficient. Applications of the two theorems are given.

Tài liệu tham khảo

Aikawa, H., Essén, M.: Potential Theory - Selected Topics. Springer, Berlin (1996) Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996) Beznea, L., Boboc, N.: Potential Theory and Right Processes. Springer, Berlin (2004) Beznea, L., Cornea, A., Röckner, M.: Potential theory of infinite dimensional Lévy processes. J. Func. Anal. 261, 2845–2876 (2011) Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. Academic Press, New York (1968) Blumenthal, R.M., Getoor, R.K.: Dual processes and potential theory. Proc. 12th Biennial Seminar of the Canadian Math. Congress, pp 137–156 (1970) Bochner, S.: Harmonic Analysis and the Theory of Probability. Univ. California Press, Berkeley and Los Angeles (1955) Bretagnolle, J.: Résults de Kesten sur les processus à accroissements indépendants. Séminare de probabilités V, Lect. Notes in Math., vol. 191, pp 21–36. Springer, Berlin (1971) Chen, Z.-Q., Fukushima, M.: Symmetric Markov Processes, Time Change, and Boundary Theory. Princeton University Press, Princeton (2012) Cheridito, P., Filipović, D., Yor, M.: Equivalent and absolutely continuous measure changes for jump-diffusion processes. Ann. Appl. Probab. 15, 1713–1732 (2005) Dawson, D.: Equivalence of Markov processes. Trans. Amer. Math. Soc. 131, 1–31 (1968) Doob, J.L.: Semimartingales and subharmonic functions. Trans. Amer. Math. Soc. 77, 86–121 (1954) Doob, J.L.: Classical Potential Theory and its Probabilistic Counterpart. Springer, Berlin (1984) Ethier, S.N., Kurtz, T.G.: Markov Processes, Characterization and Convergence. Wiley, New York (1986) Fitzsimmons, P.J.: On the equivalence of three potential principles for right Markov processes. Probab. Th. Rel. Fields 84, 251–265 (1990) Fitzsimmons, P.J.: On the quasi-regularity of semi-Dirichlet forms. Potential Anal. 15, 151–185 (2001) Fitzsimmons, P.J.: Gross’ Bwownian motion fails to satisfy the polarity principle. Rev. Roum. Math. Pures Appl. 59, 87–91 (2014) Fitzsimmons, P.J., Kanda, M.: On Choquet’s dichotomy of capacity for Markov processes. Ann. Probab. 20, 342–349 (1992) Forst, G.: The definition of energy in non-symmetric translation invariant Dirichlet spaces. Math. Ann. 216, 165–172 (1975) Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov Processes (second revised and extended edition). De Gruyter (2011) Glover, J.: Topics in energy and potential theory. Seminar on Stochastic Processes, 1982. Birkhäuser, 195–202 (1983) Glover, J., Rao, M.: Hunt’s hypothesis (H) and Getoor’s conjecture. Ann. Probab. 14, 1085–1087 (1986) Glover, J., Rao, M.: Nonsymmetric Markov processes and hypothesis (H). J. Theor. Probab. l, pp 371–380 (1988) Han, X.-F., Ma, Z.-M., Sun, W.: hĥ-transforms of positivity preserving semigroups and associated Makov processes. Acta. Math. Sinica, English Series 27, 369–376 (2011) Hansen, W., Netuka, I.: Hunt’s hypothesis (H) and the triangle property of the green function. Expo. Math. 34, 95–100 (2016) Hawkes, J.: Potential theory of Lévy processes. Proc. London Math. Soc. 3, 335–352 (1979) Hu, Z.-C., Sun, W.: Hunt’s hypothesis (H) and Getoor’s conjecture for Lévy processes. Stoch. Proc. Appl. 122, 2319–2328 (2012) Hu, Z.-C., Sun, W.: Further study on hunt’s hypothesis (H) for Lévy processes. Sci. China Math. 59, 2205–2226 (2016) Hu, Z.-C., Sun, W.: Hunt’s hypothesis (H) for the sum of two independent Lévy processes. Comm. Math. Stat. 6, 227–247 (2018) Hu, Z.-C., Sun, W., Zhang, J.: New results on hunt’s hypothesis (H) for Lévy processes. Potent. Anal. 42, 585–605 (2015) Hunt, G.A.: Markoff processes and potentials. I. Illinois J. Math. 1, 44–93 (1957) Hunt, G.A.: Markoff processes and potentials. II. Illinois J. Math. 1, 316–369 (1957) Hunt, G.A.: Markoff processes and potentials. III. Illinois J. Math. 2, 151–213 (1958) Itô, K., Watanabe, S.: Transformation of Markov processes by multiplicative functionals. Ann. Inst. Fourier (Grenoble) 15, 13–30 (1965) Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003) Kabanov, Y., Liptser, R.S., Shiryaev, A.N.: On Absolute Continuity of Probability Measures for Markov-Itô Processes. Lecture Notes in Control and Inform. Sci, vol. 25, pp 114–128. Springer, New York (1980) Kanda, M.: Two theorems on capacity for Markov processes with stationary independent increments. Z. Wahrsch. verw. Gebiete 35, 159–165 (1976) Kanda, M.: Characterisation of semipolar sets for processes with stationary independent increments. Z. Wahrsch. verw. Gebiete 42, 141–154 (1978) Kesten, H.: Hitting Probabilities of Single Points for Processes with Stationary Independent Increments. Memoirs of the American Mathematical Society, vol. 93. American Mathematical Society, Providence (1969) Kunita, H.: Absolute continuity of Markov processes and generators. Nagaya Math. J. 36, 1–26 (1969) Kunita, H.: Absolute Continuity of Markov Processes. Séminaire De Probabilités X. Leture Notex in Math, vol. 511, pp 44–77. Springer, Berlin (1976) Kunita, H., Watanabe, S.: On square integrable martingales. Nagoya Math. J. 30, 209–245 (1967) Liptser, R.S., Shiryaev, A.N.: Statistics for Random Processes I, 2nd edn. Springer, New York (1977). (2nd edn. 2001) Ma, Z.-M., Röckner, M.: Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer, Berlin (1992) Newman, C.M.: The inner product of path space measures corresponding to random processes with independent increments. Bull. Amer. Math. Soc. 78, 268–271 (1972) Newman, C.M.: On the orthogonality of independent increment processes, Topics in Probability Theory. In: Stroock, D.W., Varadhan, S.R.S. (eds.) Courant Inst. Math. Sci., New York Univ., New York), pp. 93–111 (1973) Palmowski, Z., Rolski, T.: A technique for exponential change of measure for Markov processes. Bernoulli 8, 767–785 (2002) Port, S.C., Stone, C.J.: The asymmetric Cauchy process on the line. Ann. Math. Statist. 40, 137–143 (1969) Port, S.C., Stone, C.J.: Brownian Motion and Classical Potential Theory. Academic Press, New York (1978) Rao, M.: On a result of M. Kanda. Z. Wahrsch. verw. Gebiete 41, 35–37 (1977) Rao, M.: Hunt’s hypothesis for lévy processes. Proc. Amer. Math. Soc. 104, 621–624 (1988) Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press, Cambridge (1999) Silverstein, M.L.: The sector condition implies that semipolar sets are quasi-polar. Z. Wahrsch. verw. Gebiete 41, 13–33 (1977) Skorohod, A.V.: On the differentiability of measures which correspond to stochastic processes, I. Processes with independent increments. Theory Probab. Appl. 2, 407–432 (1957) Skorohod, A.V.: Studies in the Theory of Random Processes, Addison-Wesley, Reading, Mass. (Russian Original 1961) (1965) Stroock, D.W.: Diffusion processes associated with lévy generators. Z. Wahrsch. verw. Gebiete 32, 209–244 (1975)