Two-Soliton Interaction Within the Framework of the Modified Korteweg–de Vries Equation

Radiophysics and Quantum Electronics - Tập 57 - Trang 737-744 - 2015
E. N. Pelinovsky1,2, E. G. Shurgalina1,2
1Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
2R.E. Alekseev Nizhny Novgorod State Technical University, Nizhny Novgorod, Russia

Tóm tắt

We study interaction of two solitons of different polarities within the framework of the modified Korteweg–de Vries equation. Three types of soliton interaction are considered, namely, exchange and overtaking interactions (for positive solitons) and an absorb-emit interaction (for solitons of different polarities). The soliton-interaction features are studied in detail. Since the soliton interaction is an elementary soliton-turbulence act, the wave-field moments from the first to the fourth inclusively, which are usually considered in the theory of turbulence, are studied. It is shown that during interaction of solitons of the same polarity, the third and fourth wave-field moments, which determine the skewness and kurtosis coefficients in the theory of turbulence, decrease, whereas for solitons of different polarities, these moments increase. The obtained results are compared with the estimates of two-soliton interaction within the framework of the Korteweg–de Vries equation.

Tài liệu tham khảo

S. P. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Springer-Verlag, New York (1984). D. Dutykh, M. Chhay, and F. Fedele, Comp. Math. Math. Phys., 53, 221 (2013). A. Salupere, P. Peterson, and J. Engelbrecht, Chaos, Solitons, and Fractals, 14, 1413 (2002). A. Salupere, P. Peterson, and J. Engelbrecht, Math. Comp. Simul., 62, 137 (2003). A. Salupere, G. A. Maugin, J. Engelbrecht, and J. Kalda, Wave Motion, 123, 49 (1996). M. Brocchini and R. Gentile, Continental Shelf Research, 21, 1533 (2001). D. Dutykh and E. Pelinovsky, Phys. Lett. A, 378, 3102 (2014). E. Shurgalina and E. Pelinovsky, Dynamics of Random Ensembles of Free Surface Gravity Waves with Application to the Killer Waves in the Ocean, Lambert Academic Publ., Saarbrucken (2012). I. Tasnim, M. M. Masud, M. Asaduzzaman, and A. A. Mamun, Chaos, 23, 013147 (2013). P. G. Drazin and R. S. Johnson, Solitons: an Introduction, Cambridge Univ. Press (1993). E. N. Pelinovskii and V. V. Sokolov, Radiophys. Quantum Electron., 19, No. 4, 378 (1976). R. Grimshaw, E. Pelinovsky, and T. Talipova, Nonlin. Proces. Geophys., 4, No. 4, 237 (1997). R. M. Miura, C. S. Gardner, and M. D. Kruskal, J. Math. Phys., 9, 1204 (1968). A. V. Slyunyaev, JETP, 92, No. 3, 529 (2001). S. C. Anco, N. T. Ngatat, and M. Willoughby, Physica D, 240, 1378 (2011). K. Hasselmann, J. Fluid Mech., 12, 481 (1962). S. Dyachenko, A. C. Newell, A. Pushkarev, and V. E. Zakharov, Physica D, 57, Nos. 1–2, 96 (1992). V. E. Zakharov and V. S. L’vov, Radiophys. Quantum Electron., 18, No. 10, 1084 (1975). V. S. Lvov, Y. V. Lvov, A. C. Newell, and V. E. Zakharov, Phys. Rev. E, 56, 390 (1997). A. A. Kurkin and E. N. Pelinovsky, Rogue Waves: Facts, Theory, and Simulation [in Russian], Inst. Appl. Phys., Nizhny Novgorod (2004). Y. Choi, Y. V. Lvov, and S. Nazarenko, Recent Res. Devel. Fluid Dyn., 5, 33 (2004). V. E. Zakharov, Sov. Phys. JETP, 33, No. 3, 538 (1971). G. A. El and A. M. Kamchatnov, Phys. Rev. Lett., 95, 204101 (2005). G. A. El, A. L. Krylov, S. A. Molchanov, and S. Venakides, Physica D, 152–153, 653 (2005). G. A. El, A. M. Kamchatnov, M. V. Pavlov, and S. A. Zykov, J. Nonlin. Sci., 21, 151 (2011). E. N. Pelinovsky and E. G. Shurgalina, Fund. Prikl. Gidrofiz., 6, 78 (2013). E. N. Pelinovsky, E. G. Shurgalina, A. V. Sergeeva, et al., Phys. Lett. A, 377, Nos. 3–4, 272 (2013). P. D. Lax, Commun. Pure Appl. Math., 21, 467 (1968). S. Clarke, R. Grimshaw, P. Miller, et al., Chaos, 10, 383 (2000). V. E. Zakharov, Stud. Appl. Math., 122, 219 (2009).