Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hai cảm biến nano huỳnh quang magnetite BODIPY chức năng mới để phát hiện ion Cr(VI) trong dung dịch nước
Tóm tắt
Trong nghiên cứu này, chúng tôi đã phát triển hai loại cảm biến nano huỳnh quang cực kỳ nhạy cảm Fe3O4@SiO2-TPED-BODIPY và Fe3O4@SiO2-TMPTA-BODIPY để phát hiện chọn lọc ion Cr(VI). Việc cảm biến ion kim loại Cr(VI) dựa trên hiện tượng mất phát quang của BODIPY được chức năng hóa với các hạt nano Fe3O4@SiO2-TPED và Fe3O4@SiO2-TMPTA trong môi trường ethanol-nước. Việc phân tích đặc trưng hợp chất BODIPY huỳnh quang mới tổng hợp được thực hiện bằng máy quang phổ NMR 1H và 13C. Đặc điểm hình thái, tính chất hóa học và vật lý của các cảm biến nano đã được nghiên cứu thông qua phân tích nhiệt trọng lượng (TGA), nhiễu xạ tia X (XRD), phân tích tán xạ năng lượng tia X (EDX), kính hiển vi điện tử quét (SEM), quang phổ FT-IR và kính hiển vi điện tử truyền qua (TEM). Quang phổ UV-visible và huỳnh quang được sử dụng để phân tích các cảm biến nano huỳnh quang magnetite được chức năng hóa BODIPY. Các phép đo đặc trưng cho thấy đường kính trung bình của các hạt nano huỳnh quang magnetite Fe3O4@SiO2-TPED-BODIPY và Fe3O4@SiO2-TMPTA-BODIPY lần lượt là 18,5 và 19 nm. Các cảm biến nano huỳnh quang magnetite Fe3O4@SiO2-TPED-BODIPY và Fe3O4@SiO2-TMPTA-BODIPY (0,1 gL−1 trong EtOH/H2O, v/v (3/7)) cho thấy phản ứng mất phát quang đối với ion Cr(VI) trong môi trường ở pH: 1. Sự mất phát quang của cảm biến nano huỳnh quang magnetite Fe3O4@SiO2-TPED-BODIPY và Fe3O4@SiO2-TMPTA-BODIPY bởi ion Cr(VI) đã hoàn tất trong 5 và 3 phút đầu tiên tương ứng. Những đặc điểm này cung cấp khả năng ứng dụng của cảm biến nano huỳnh quang magnetite được chức năng hóa BODIPY (Fe3O4@SiO2-TPED-BODIPY và Fe3O4@SiO2-TMPTA-BODIPY) như một lớp cảm biến không độc mới cho các ứng dụng môi trường.
Từ khóa
Tài liệu tham khảo
Loryuenyong V, Jarunsak N, Chuangchai T, Buasri A (2014) The photocatalytic reduction of hexavalent chromium by controllable mesoporous anatase TiO2 nanoparticles. Adv Mater Sci Eng 2014:348427(1)
Yang Y, Wang G, Deng Q, Ng DH, Zhao H (2014) Microwave-assisted fabrication of nanoparticulate TiO2 microspheres for synergistic photocatalytic removal of Cr (VI) and methyl orange. ACS Appl Mater Interfaces 6(4):3008–3015
Cai F, Liu X, Liu S, Liu H, Huang Y (2014) A simple one-pot synthesis of highly fluorescent nitrogen-doped graphene quantum dots for the detection of Cr (VI) in aqueous media. RSC Adv 4(94):52016–52022
Han J, Bu X, Zhou D, Zhang H, Yang B (2014) Discriminating Cr (III) and Cr (VI) using aqueous CdTe quantum dots with various surface ligands. RSC Adv 4(62):32946–32952
Gomez V, Callao M (2006) Chromium determination and speciation since 2000. Trend Anal Chem 25(10):1006–1015
Shinde UA, Sharma G, Xu YJ, Dhalla NS, Goyal RK (2004) Insulin sensitising action of chromium picolinate in various experimental models of diabetes mellitus. J Trace Elem Med Biol 18(1):23–32
Ly NH, Oh CH, Joo S-W (2015) A submicromolar Cr (III) sensor with a complex of methionine using gold nanoparticles. Sens Actuators B Chem 219:276–282
Ye J-H, Wang Y, Bai Y, Zhang W, He W (2014) A highly selective turn-on fluorescent chemodosimeter for Cr (VI) and its application in living cell imaging. RSC Adv 4(6):2989–2992
Sui C-X, Liu Y-F, Zhang W-H, Li P-A, Zhang D (2014) CdTe-CdSe nanocrystals capped with dimethylaminoethanethiol as ultrasensitive fluorescent probes for chromium (VI). Microchim Acta 181(3–4):347–353
Arancibia V, Valderrama M, Silva K, Tapia T (2003) Determination of chromium in urine samples by complexation–supercritical fluid extraction and liquid or gas chromatography. J Chromatogr B 785(2):303–309
Moghadam MR, Dadfarnia S, Shabani AMH (2011) Speciation and determination of ultra trace amounts of chromium by solidified floating organic drop microextraction (SFODME) and graphite furnace atomic absorption spectrometry. J Hazard Mater 186(1):169–174
Ouyang R, Bragg SA, Chambers JQ, Xue Z-L (2012) Flower-like self-assembly of gold nanoparticles for highly sensitive electrochemical detection of chromium (VI). Anal Chim Acta 722:1–7
Xiang Y, Mei L, Li N, Tong A (2007) Sensitive and selective spectrofluorimetric determination of chromium (VI) in water by fluorescence enhancement. Anal Chim Acta 581(1):132–136
Formica M, Fusi V, Giorgi L, Micheloni M (2012) New fluorescent chemosensors for metal ions in solution. Coord Chem Rev 256(1–2):170–192
Wei Y, Aydin Z, Zhang Y, Liu Z, Guo M (2012) A turn-on fluorescent sensor for imaging labile fe3+ in live neuronal cells at subcellular resolution. ChemBioChem 13(11):1569–1573
Stanciu L, Won Y-H, Ganesana M, Andreescu S (2009) Magnetic particle-based hybrid platforms for bioanalytical sensors. Sensors 9(4):2976–2999
Bao S, Tang L, Li K, Ning P, Peng J, Guo H, Zhu T, Liu Y (2016) Highly selective removal of Zn (II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@ SiO2 magnetic nano-adsorbent. J Colloid Interface Sci 462:235–242
Meng C, Zhikun W, Qiang L, Chunling L, Shuangqing S, Songqing H (2018) Preparation of amino-functionalized Fe3O4@ mSiO2 core-shell magnetic nanoparticles and their application for aqueous Fe3+ removal. J Hazard Mater 341:198–206
Wang J, Zheng S, Shao Y, Liu J, Xu Z, Zhu D (2010) Amino-functionalized Fe3O4@ SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci 349(1):293–299
Wechakorn K, Chanpanich P, Kamkalong P, Anantachisilp S (2019) Rhodamine-Triazole functionalized Fe3O4@ SiO2 nanoparticles as fluorescent sensors for heavy metal ions. Orient J Chem 35(3):1054–1061
Kursunlu AN, Ozmen M, Guler E (2016) Novel magnetite nanoparticle based on BODIPY as fluorescent hybrid material for Ag (I) detection in aqueous medium. Talanta 153:191–196
Ma C, Li C, He N, Wang F, Ma N, Zhang L, Lu Z, Ali Z, Xi Z, Li X (2012) Preparation and characterization of monodisperse core–shell Fe3O4@ SiO2 microspheres and its application for magnetic separation of nucleic acids from E. coli BL21. J Biomed Nanotechnol 8(6):1000–1005
Peng X, Wang Y, Tang X, Liu W (2011) Functionalized magnetic core–shell Fe3O4@ SiO2 nanoparticles as selectivity-enhanced chemosensor for Hg (II). Dyes Pigments 91(1):26–32
Xu Y, Zhou Y, Ma W, Wang S, Li S (2013) Functionalized magnetic core–shell Fe 3 O 4@ SiO 2 nanoparticles for sensitive detection and removal of Hg 2+. J Nanopart Res 15(6):1716
Zhu B, Zhao J, Yu H, Yan L, Wei Q, Du B (2013) Naphthalimide-functionalized Fe3O4@ SiO2 core/shell nanoparticles for selective and sensitive adsorption and detection of Hg2+. Chem Eng J 219:411–418
Kursunlu AN, Ozmen M, Güler E (2019) A novel fluorescent Chemosensor for cu (II) ion: click synthesis of dual-Bodipy including the Triazole groups and bioimaging of yeast cells. J Fluoresc 29(6):1321–1329
Kursunlu AN (2014) Porphyrin–Bodipy combination: synthesis, characterization and antenna effect. RSC Adv 4(88):47690–47696
Massart R, Cabuil V (1987) Synthèse en milieu alcalin de magnétite colloïdale: contrôle du rendement et de la taille des particules. J Chim Phys 84:967–973
Maity D, Agrawal D (2007) Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J Magn Magn Mater 308(1):46–55
Arsalani N, Fattahi H, Nazarpoor M (2010) Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. Express Polym Lett 4(6):329–338
Can K, Ozmen M, Ersoz M (2009) Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization. Colloids Surf B 71(1):154–159
Akbarzadeh A, Mikaeili H, Zarghami N, Mohammad R, Barkhordari A, Davaran S (2012) Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. Int J Nanomedicine 7:511
Yang H-S, Choi S-Y, Hyun S-H, Park H-H, Hong J-K (1997) Ambient-dried low dielectric SiO2 aerogel thin film. J Non-Cryst Solids 221(2–3):151–156
Zamani F, Izadi E (2014) Polyvinyl amine coated Fe3O4@ SiO2 magnetic microspheres for Knoevenagel condensation. Chin J Catal 35(1):21–27
Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69
Aslani E, Abri A, Pazhang M (2018) Immobilization of trypsin onto Fe3O4@ SiO2–NH2 and study of its activity and stability. Colloids Surf B: Biointerfaces 170:553–562
Farahbakhsh F, Ahmadi M, Hekmatara SH, Sabet M, Heydari-Bafrooei E (2019) Improvement of photocatalyst properties of magnetic NPs by new anionic surfactant. Mater Chem Phys 224:279–285
Cheng G, Hao S-J, Wan Y, Shan D-Y, Yang J, Zheng S-Y (2017) Self-assembly of smart multifunctional hybrid compartments with programmable bioactivity. Chem Mater 29(5):2081–2089
Harinath Y, Reddy DHK, Sharma LS, Seshaiah K (2017) Development of hyperbranched polymer encapsulated magnetic adsorbent (Fe3O4@ SiO2–NH2-PAA) and its application for decontamination of heavy metal ions. J Environ Chem Eng 5(5):4994–5001
Sheykhan M, Yahyazadeh A, Ramezani L (2017) A novel cooperative Lewis acid/Brønsted base catalyst Fe3O4@ SiO2-APTMS-Fe (OH) 2: an efficient catalyst for the Biginelli reaction. Mol Catal 435:166–173
Rahpeyma SS, Dilmaghani A, Raheb J (2018) Evaluation of desulfurization activity of SPION nanoparticle-coated bacteria in the presence of magnetic field. Appl Nanosci 8(8):1951–1972
Khesri Hammadi H, Khodadoust S (2020) Extraction of diclofenac by SiO2-NH2@ Fe3O4 and its determination: central composite design. J Sep Sci 43(2):470–477
Uppal S, Arora A, Gautam S, Singh S, Choudhary R, Mehta S (2019) Magnetically retrievable Ce-doped Fe 3 O 4 nanoparticles as scaffolds for the removal of azo dyes. RSC Adv 9(40):23129–23141
Singh RK, Kim TH, Patel KD, Knowles JC, Kim HW (2012) Biocompatible magnetite nanoparticles with varying silica-coating layer for use in biomedicine: physicochemical and magnetic properties, and cellular compatibility. J Biomed Mater Res A 100(7):1734–1742
Zhou J, Li Y, H-b S, Tang Z, Qi L, Liu L, Ai Y, Li S, Shao Z, Liang Q (2017) Porous silica-encapsulated and magnetically recoverable Rh NPs: a highly efficient, stable and green catalyst for catalytic transfer hydrogenation with “slow-release” of stoichiometric hydrazine in water. Green Chem 19(14):3400–3407
Fan R, Min H, Hong X, Yi Q, Liu W, Zhang Q, Luo Z (2019) Plant tannin immobilized Fe3O4@ SiO2 microspheres: a novel and green magnetic bio-sorbent with superior adsorption capacities for gold and palladium. J Hazard Mater 364:780–790
Quang DV, Lee JE, Kim J-K, Kim YN, Shao GN, Kim HT (2013) A gentle method to graft thiol-functional groups onto silica gel for adsorption of silver ions and immobilization of silver nanoparticles. Powder Technol 235:221–227
Wang Z, Xu J, Hu Y, Zhao H, Zhou J, Liu Y, Lou Z, Xu X (2016) Functional nanomaterials: study on aqueous Hg (II) adsorption by magnetic Fe3O4@ SiO2-SH nanoparticles. J Taiwan Inst Chem Eng 60:394–402
Karami K, Jamshidian N, Nikazma MM, Hervés P, Shahreza AR, Karami A (2018) Hiyama cross-coupling reaction using Pd (II) nanocatalyst immobilized on the surface of Fe3O4@ SiO2. Appl Organomet Chem 32(1):e3978
Lin Y, Chen H, Lin K, Chen B, Chiou C (2011) Application of magnetic particles modified with amino groups to adsorb copper ions in aqueous solution. J Environ Sci 23(1):44–50
Sun L, Hu S, Sun H, Guo H, Zhu H, Liu M, Sun H (2015) Malachite green adsorption onto Fe 3 O 4@ SiO 2-NH 2: isotherms, kinetic and process optimization. RSC Adv 5(16):11837–11844
Pavia DL, Lampman GM, Kriz GS (2001) Introduction to spectroscopy a guide for student of organic chemistry. Brooks/Cole, London
Susanto S, Prasdiantika R (2018) Pengaruh Rute sıntesıs terhadap keefektıfan pengıkatan gugus PDETA pada sıntesıs Fe3O4@SiO2@PDETA. Jurnal Teknosains 8(1):39–47
Wang P, Liu H, Niu J, Li R, Ma J (2014) Entangled Pd complexes over Fe 3 O 4@ SiO 2 as supported catalysts for hydrogenation and Suzuki reactions. Catal Sci Technol 4(5):1333–1339
He H, Si L, Zhong Y, Dubey M (2012) Iodized BODIPY as a long wavelength light sensitizer for the near-infrared emission of ytterbium (III) ion. Chem Commun 48(13):1886–1888
Esmaeilpour M, Javidi J, Dodeji FN, Abarghoui MM (2014) Facile synthesis of 1-and 5-substituted 1H-tetrazoles catalyzed by recyclable ligand complex of copper (II) forted on superparamagnetic Fe3O4@ SiO2 nanoparticles. J Mol Catal A Chem 393:18–29
Zhang Y-X, Yu X-Y, Jin Z, Jia Y, Xu W-H, Luo T, Zhu B-J, Liu J-H, Huang X-J (2011) Ultra high adsorption capacity of fried egg jellyfish-like γ-AlOOH (Boehmite)@ SiO2/Fe3O4 porous magnetic microspheres for aqueous Pb (II) removal. J Mater Chem 21(41):16550–16557
Yang T, Shen C, Li Z, Zhang H, Xiao C, Chen S, Xu Z, Shi D, Li J, Gao H (2005) Highly ordered self-assembly with large area of Fe3O4 nanoparticles and the magnetic properties. J Phys Chem B 109(49):23233–23236
Zhang X, Wang J, Li R, Dai Q, Liu L (2013) Removal of uranium (vi) from aqueous solutions by surface modified magnetic Fe3O4 particles. New J Chem 37(12):3914–3919
Reed C, Lee Y-K, Oyama ST (2006) Structure and oxidation state of silica-supported manganese oxide catalysts and reactivity for acetone oxidation with ozone. J Phys Chem B 110(9):4207–4216
Emami S, Nikje MA (2018) Magnetic Fe 3 O 4/SiO 2/NH 2 as the recyclable heterogeneous nanocatalyst on bisphenol-a recovery from polycarbonate wastes. Russ J Appl Chem 91(1):159–166
Shukla SK, Agorku ES, Mittal H, Mishra AK (2014) Synthesis, characterization and photoluminescence properties of Ce 3+−doped ZnO-nanophosphors. Chem Pap 68(2):217–222
Ghasemzadeh MA, Abdollahi-Basir MH, Babaei M (2015) Fe3O4@ SiO2–NH2 core-shell nanocomposite as an efficient and green catalyst for the multi-component synthesis of highly substituted chromeno [2, 3-b] pyridines in aqueous ethanol media. Green Chem Lett Rev 8(3–4):40–49
Salazar-Camacho C, Villalobos M, de la Luz Rivas-Sánchez M, Arenas-Alatorre J, Alcaraz-Cienfuegos J, Gutiérrez-Ruiz ME (2013) Characterization and surface reactivity of natural and synthetic magnetites. Chem Geol 347:233–245
Kamari S, Shahbazi A (2020) Biocompatible Fe3O4@ SiO2-NH2 nanocomposite as a green nanofiller embedded in PES–nanofiltration membrane matrix for salts, heavy metal ion and dye removal: long–term operation and reusability tests. Chemosphere 243:125282
Erdem B, Avşar SB, Erdem S, Tekin N (2019) Adsorption of light green and brilliant yellow anionic dyes using amino functionalized magnetic silica (Fe3O4@ SiO2@ NH2) nanocomposite. J Dispers Sci Technol 40(9):1227–1235
Xu Z, Li W, Xiong Z, Fang J, Li Y, Wang Q, Zeng Q (2016) Removal of anionic dyes from aqueous solution by adsorption onto amino-functionalized magnetic nanoadsorbent. Desalination Water Treat 57(15):7054–7065
Mir N, Karimi P, Castano CE, Norouzi N, Rojas JV, Mohammadi R (2019) Functionalizing Fe3O4@ SiO2 with a novel mercaptobenzothiazole derivative: application to trace fluorometric and colorimetric detection of Fe3+ in water. Appl Surf Sci 487:876–888
Babu C, Palanisamy B, Sundaravel B, Palanichamy M, Murugesan V (2013) A novel magnetic Fe3O4/SiO2 core–shell nanorods for the removal of arsenic. J Nanosci Nanotechnol 13(4):2517–2527
Shah M, Balouch A, Alveroglu E (2018) Sensitive fluorescence detection of Ni 2+ ions using fluorescein functionalized Fe 3 O 4 nanoparticles. J Mater Chem C 6(5):1105–1115
Guo J-f, D-q H, Yang M, C-j H, J-j L, H-b F, Luo H-b, Yang P (2016) Colorimetric detection of Cr (VI) based on the leaching of gold nanoparticles using a paper-based sensor. Talanta 161:819–825
Tan F, Liu X, Quan X, Chen J, Li X, Zhao H (2011) Selective detection of nanomolar Cr (VI) in aqueous solution based on 1, 4-dithiothreitol functionalized gold nanoparticles. Anal Methods 3(2):343–347
Kim D, Choi E, Lee C, Choi Y, Kim H, Yu T, Piao Y (2019) Highly sensitive and selective visual detection of Cr (VI) ions based on etching of silver-coated gold nanorods. Nano Converg 6(1):34
Soares R, Castro Carneiroa M, Inês Couto Monteiro M, de Souza Henrique Junior S, Veronesi Marinho Pontes F, Irene Dias da Silva L, Alcover Neto A, Erthal Santelli R (2009) Simultaneous speciation of chromium by spectrophotometry and multicomponent analysis. Chem Speciat Bioavailab 21(3):153–160