Two New Ferrous Molybdophosphates as Temperature-Dependent Hydrothermal Reaction Products

Journal of Cluster Science - Tập 21 - Trang 105-119 - 2010
Lijuan Zhang1, Xianqi Li1, Yunshan Zhou1,2,3
1State Key Laboratory of Chemical Resource Engineering, Institute of Science, Beijing University of Chemical Technology, Beijing, People’s Republic of China
2State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, People’s Republic of China
3Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, People’s Republic of China

Tóm tắt

Two new ferrous molybdophosphates, (H2enMe)7FeII[Mo 12 V (HPO4)2(PO4)6(OH)6O24]·7H2O 1 and (H2enMe)6FeII[Mo 12 V (HPO4)4(PO4)4(OH)6O24]·4H2O 2 (enMe = 1,2-propanediamine), have been synthesized from an identical starting mixture through hydrothermal reactions using temperature as the only independent variable, and thoroughly characterized by IR, TG, single crystal X-ray diffraction and cyclic voltammetry. The structures of both 1 and 2 are built from the building blocks of the formula, {FeII[Mo6P4O31]2}, consisting of a network of MO6 (M = Fe, Mo) octahedra and PO4 tetrahedra linked through their vertices as anions, and protonated 1,2-propanediamine as cations, respectively. The most important aspect is that the non-hydrogen atomic ratio of Mo, Fe, P, O in the anions of 1 and 2 is the same, but the protonation of the PO4 groups is different in 1 and 2. Less protonation of the PO4 groups in 1 obtained at high temperature results in the anion carrying more charges and gives rise to more H2enMe cations per [FeII(P8Mo 12 V )] unit compared with that in 2 obtained at low temperature, and as a consequence, different interpenetrating hydrogen-bonded network structures are formed in the two different compounds in terms of packing efficiency and the system energy minimization.

Tài liệu tham khảo

D. Wu, S. Lin, E. Tang, and G. Y. Yan (2008). C. R. Chim. 11, 152. W. B. Yang, C. Z. Lu, C. D. Wu, S. F. Lu, D. M. Wu, and H. H. Zhuang (2002). J. Clust. Sci. 13, 43. L. Y. Duan, F. C. Liu, X. L. Wang, E. Wang, C. Qin, Y. G. Li, X. L. Wang, and C. W. Hu (2004). J. Mol. Struct. 705, 15. X. Zhang, J. Q. Xu, J. H. Yu, J. Lu, Y. Xu, Y. Chen, T. G. Wang, X. Y. Yu, Q. F. Yang, and Q. Hou (2007). J. Solid State Chem. 180, 1949. S. Y. Mao, Y. Xie, Z. X. Xie, and L. S. Zheng (2008). J. Alloys Compd. 456, 534. X. Z. Liu, B. Z. Lin, L. W. He, X. F. Huang, and Y. L. Chen (2008). J. Mol. Struct. 877, 72. W. J. Chang, Y. C. Jiang, S. L. Wang, and K. H. Lii (2006). Inorg. Chem. 45, 6586. J. Liu, E. Wang, X. L. Wang, D. R. Xiao, and L. L. Fan (2008). J. Mol. Struct. 876, 206. B. Z. Lin, X. Z. Liu, B. H. Xu, Q. Q. Wang, and Z. J. Xiao (2008). Solid State Sci. 10, 1517. S. Feng and R. Xu (2001). Acc. Chem. Res. 34, 239. L. Pan, H. M. Liu, X. G. Lei, X. Y. Huang, D. H. Olson, N. J. Turro, and J. Li (2003). Angew. Chem. Int. Ed. 42, 542. L. Pan, M. B. Sander, X. Huang, J. Li, M. Smith, E. Bittner, B. Bockrath, and J. K. Johnson (2004). J. Am. Chem. Soc. 126, 1308. M. Sasa, K. Tanaka, X. H. Bu, M. Shiro, and M. Shionoya (2001). J. Am. Chem. Soc. 123, 10750. M. Du, Y. M. Guo, S. T. Chen, X. H. Bu, S. R. Batten, J. Ribas, and S. Kitagawa (2004). Inorg. Chem. 43, 1287. R. Q. Zou, J. R. Li, Y. B. Xie, R. H. Zhang, and X. H. Bu (2004). Cryst. Growth Des. 4, 79. X. Yang, J. D. Ranford, and J. J. Vittal (2004). Cryst. Growth Des. 4, 781. Y. S. Zhou, L. J. Zhang, H. K. Fun, J. L. Zuo, I. A. Razak, S. Chantrapromma, and X. Z. You (2001). New J. Chem. 25, 1342. Y. S. Zhou, L. J. Zhang, X. Z. You, and S. Natarajan (2001). J. Solid State Chem. 159, 209. Y. S. Zhou, L. J. Zhang, X. Z. You, and S. Natarajan (2001). Inter J. Inorg. Mater. 3, 373. Y. S. Zhou, L. J. Zhang, X. Z. You, and S. Natarajan (2001). Inorg. Chem. Commun. 4, 699. L. J. Zhang, Y. S. Zhou, X. Q. Li, and Y. H. Li (2007). J. Clust. Sci. 18, 921. L. J. Zhang, X. Q. Li, Y. Z. Zhou, and X. Wang (2009). J. Mol. Struct. 928, 59. G. M. Sheldrick SADABS (University of Göttingen, Germany, 1996). G. M. Sheldrick, SHELXS-97 Program for X-ray Crystal Structure Solution (University of Göttingen, Göttingen, Germany, 1997). G. M. Sheldrick, SHELXL-97 Program for X-ray Crystal Structure Refinement (University of Göttingen, Göttingen, Germany, 1997). R. C. Haushalter and F. W. Lai (1989). Inorg. Chem. 28, 2905. L. A. Mundi and R. C. Haushalter (1993). Inorg. Chem. 32, 1579. A. Leclaire, A. Guesdon, F. Berrah, M. M. Borel, and B. Raveau (1999). J. Solid State Chem. 145, 291. E. Cadot, A. Dolbecq, B. Salignac, and F. Sécheresse (1999). Chem. Eur. J 5, 2396. D. Brown, in Structure and Bonding in Crystals, Vol. 2. Edited by M. O’Keefe and A. Navrotsky (Academic Press, New York, 1981). A. L. Spek PLATON, A Multipurpose Crystallographic Tool (Utrecht University Press, The Netherlands, 2006). H. Guo and S. Liu (2004). Inorg. Chem. Commun. 7, 1217. X. He, P. Zhang, T.-Y. Song, Z.-Ch. Mu, J.-H. Yu, Y. Wang, and J.-N. Xu (2004). Polyhedron 23, 2153. P. J. Zapf, R. L. LaDuca, R. S. Rarig, K. M. Johnson, and J. Zubieta (1998). Inorg. Chem. 37, 3411. C. Wei, J. Chen, Y. Huang, T. Lan, Z. Li, W. Zhang, and Z. Zhang (2006). J. Mol. Struct. 798, 117. X. Chen, S. Lin, L. Chen, X. Chen, C. Liu, J. Chen, and L. Yang (2007). Inorg. Chem.Commun. 10, 1285. Y. Ma, Y. Li, E. Wang, Y. Lu, X. Wang, and X. Xu (2006). J. Solid State Chem. 179, 2367. H. Guo and S. Liu (2005). J. Mol. Struct. 741, 229. M. Liu and S. Dong (1995). Electrochim. Acta 40, 197.