Two-Dimensional Distance Correlation Maps from Pulsed Triple Electron Resonance (TRIER) on Proteins with Three Paramagnetic Centers
Tóm tắt
Recently, we introduced the pulsed triple electron resonance (TRIER) experiment, which correlates dipolar frequencies of molecules with three electron spins. These correlation patterns contain valuable information: in combination with double electron–electron resonance (DEER) they allow to interpret distance distributions of biological systems that exist in more than one conformation. Together with an improved sequence and new data processing, we were now for the first time able to obtain two-dimensional distance correlation maps of the previously investigated model compounds as well as of spin-labeled proteins. For this we applied two-dimensional approximate Pake transformation to TRIER data. This enabled us to get distance correlation plots from two triple-labeled protein samples that were in good agreement with DEER data and simulations. With such information it should then be possible to assign peaks in DEER distance distributions for macromolecules that can exist in more than one conformation.
Tài liệu tham khảo
A. Milov, K. Salikhov, M. Shirov, Fiz. Tverd. Tela 23, 975–982 (1981)
A.D. Milov, A.B. Ponomarev, Y.D. Tsvetkov, Chem. Phys. Lett. 110(1), 67–72 (1984). https://doi.org/10.1016/0009-2614(84)80148-7
R.E. Martin, M. Pannier, F. Diederich, V. Gramlich, M. Hubrich, H.W. Spiess, Angew. Chem. Int. Ed. 37(20), 2833–2837 (1998). https://doi.org/10.1002/(SICI)1521-3773(19981102)37:20%3c2833::AID-ANIE2833%3e3.0.CO;2-7
M. Pannier, S. Veit, A. Godt, G. Jeschke, H. Spiess, J. Magn. Reson. 142(2), 331–340 (2000). https://doi.org/10.1006/jmre.1999.1944
D.E. Kaplan, E.L. Hahn, J. Phys. Radium 19(11), 821–825 (1958). https://doi.org/10.1051/jphysrad:019580019011082100
G. Jeschke, A. Bender, H. Paulsen, H. Zimmermann, A. Godt, J. Magn. Reson. 169(1), 1–12 (2004). https://doi.org/10.1016/j.jmr.2004.03.024
R. Ward, A. Bowman, E. Sozudogru, H. El-Mkami, T. Owen-Hughes, D.G. Norman, J. Magn. Reson. 207(1), 164–167 (2010). https://doi.org/10.1016/j.jmr.2010.08.002
T. Schmidt, M.A. Wälti, J.L. Baber, E.J. Hustedt, G.M. Clore, Angew. Chem. 128(51), 16137–16141 (2016). https://doi.org/10.1002/ange.201609617
P.P. Borbat, J.H. Freed, Chem. Phys. Lett. 313(1–2), 145–154 (1999). https://doi.org/10.1016/S0009-2614(99)00972-0
G. Jeschke, M. Pannier, A. Godt, H.W. Spiess, Chem. Phys. Lett. 331(2–4), 243–252 (2000). https://doi.org/10.1016/S0009-2614(00)01171-4
G. Jeschke, M. Sajid, M. Schulte, A. Godt, Phys. Chem. Chem. Phys. 11(31), 6580–6591 (2009). https://doi.org/10.1039/B905724B
S. Valera, K. Ackermann, C. Pliotas, H. Huang, J.H. Naismith, B.E. Bode, Chem. Eur. J. 22(14), 4700–4703 (2016). https://doi.org/10.1002/chem.201505143
T. von Hagens, Y. Polyhach, M. Sajid, A. Godt, G. Jeschke, Phys. Chem. Chem. Phys. 15(16), 5854 (2013). https://doi.org/10.1039/c3cp44462g
O. Duss, E. Michel, M. Yulikov, M. Schubert, G. Jeschke, F.H.T. Allain, Nature 509(7502), 588–592 (2014). https://doi.org/10.1038/nature13271
S. Pribitzer, M. Sajid, M. Hülsmann, A. Godt, G. Jeschke, J. Magn. Reson. 282(Suppl. C), 119–128 (2017). https://doi.org/10.1016/j.jmr.2017.07.012
A. Doll, G. Jeschke, J. Magn. Reson. 280, 46–62 (2017). https://doi.org/10.1016/j.jmr.2017.01.004
A. Doll, S. Pribitzer, R. Tschaggelar, G. Jeschke, J. Magn. Reson. 230, 27–39 (2013). https://doi.org/10.1016/j.jmr.2013.01.002
A. Doll, M. Qi, S. Pribitzer, N. Wili, M. Yulikov, A. Godt, G. Jeschke, Phys. Chem. Chem. Phys. 17(11), 7334–7344 (2015). https://doi.org/10.1039/C4CP05893C
A. Doll, M. Qi, N. Wili, S. Pribitzer, A. Godt, G. Jeschke, J. Magn. Reson. 259, 153–162 (2015). https://doi.org/10.1016/j.jmr.2015.08.010
I. Kaminker, R. Barnes, S. Han, J. Magn. Reson. 279, 81–90 (2017). https://doi.org/10.1016/j.jmr.2017.04.016
P.E. Spindler, Y. Zhang, B. Endeward, N. Gershernzon, T.E. Skinner, S.J. Glaser, T.F. Prisner, J. Magn. Reson. 218, 49–58 (2012). https://doi.org/10.1016/j.jmr.2012.02.013
M. Deschamps, G. Kervern, D. Massiot, G. Pintacuda, L. Emsley, P.J. Grandinetti, J. Chem. Phys. 129(20), 204110 (2008). https://doi.org/10.1063/1.3012356
A. Tannús, M. Garwood, J. Magn. Reson. A 120(1), 133–137 (1996). https://doi.org/10.1006/jmra.1996.0110
A. Doll, G. Jeschke, Phys. Chem. Chem. Phys. 18(33), 23111–23120 (2016). https://doi.org/10.1039/C6CP03067J
S. Pribitzer, T.F. Segawa, A. Doll, G. Jeschke, J. Magn. Reson. 272, 37–45 (2016). https://doi.org/10.1016/j.jmr.2016.08.010
T.F. Segawa, A. Doll, S. Pribitzer, G. Jeschke, J. Chem. Phys. 143(4), 044201 (2015). https://doi.org/10.1063/1.4927088
P.E. Spindler, P. Schöps, W. Kallies, S.J. Glaser, T.F. Prisner, J. Magn. Reson. 280, 30–45 (2017). https://doi.org/10.1016/j.jmr.2017.02.023
F.D. Breitgoff, Y.O. Polyhach, G. Jeschke, Phys. Chem. Chem. Phys. 19(24), 15754–15765 (2017). https://doi.org/10.1039/C7CP01487B
A. Doll, M. Qi, A. Godt, G. Jeschke, J. Magn. Reson. 273, 73–82 (2016). https://doi.org/10.1016/j.jmr.2016.10.011
A. Schweiger, Pure Appl. Chem. 64(6), 809–814 (2009). https://doi.org/10.1351/pac199264060809
M. Willer, A. Schweiger, Chem. Phys. Lett. 230(1), 67–74 (1994). https://doi.org/10.1016/0009-2614(94)01133-8
L. Emsley, G. Bodenhausen, Chem. Phys. Lett. 165(6), 469–476 (1990). https://doi.org/10.1016/0009-2614(90)87025-M
L. Emsley, G. Bodenhausen, J. Magn. Reson. 97(1), 135–148 (1992). https://doi.org/10.1016/0022-2364(92)90242-Y
C.E. Tait, S. Stoll, J. Magn. Reson. 277, 36–44 (2017). https://doi.org/10.1016/j.jmr.2017.02.007
G. Jeschke, S. Pribitzer, A. Doll, J. Phys. Chem. B 119(43), 13570–13582 (2015). https://doi.org/10.1021/acs.jpcb.5b02964
F.D. Breitgoff, J. Soetbeer, A. Doll, G. Jeschke, Y.O. Polyhach, Phys. Chem. Chem. Phys. 19(24), 15766–15779 (2017). https://doi.org/10.1039/C7CP01488K
J. Soetbeer, M. Hülsmann, A. Godt, Y. Polyhach, G. Jeschke, Phys. Chem. Chem. Phys. 20(3), 1615–1628 (2018). https://doi.org/10.1039/C7CP07074H
G. Turin, IRE Trans. Inf. Theory 6(3), 311–329 (1960). https://doi.org/10.1109/TIT.1960.1057571
A. Savitzky, Anal. Chem. 61(15), 921A–923A (1989). https://doi.org/10.1021/ac00190a744
A. Savitzky, M.J.E. Golay, Anal. Chem. 36(8), 1627–1639 (1964). https://doi.org/10.1021/ac60214a047
R. Brüschweiler, J. Chem. Phys. 121(1), 409–414 (2004). https://doi.org/10.1063/1.1755652
R. Brüschweiler, F. Zhang, J. Chem. Phys. 120(11), 5253–5260 (2004). https://doi.org/10.1063/1.1647054
G. Jeschke, A. Koch, U. Jonas, A. Godt, J. Magn. Reson. 155(1), 72–82 (2002). https://doi.org/10.1006/jmre.2001.2498
Y.W. Chiang, P.P. Borbat, J.H. Freed, J. Magn. Reson. 172(2), 279–295 (2005). https://doi.org/10.1016/j.jmr.2004.10.012
P. Hansen, SIAM Rev. 34(4), 561–580 (1992). https://doi.org/10.1137/1034115
G. Jeschke, G. Panek, A. Godt, A. Bender, H. Paulsen, Appl. Magn. Reson. 26(1–2), 223–244 (2004). https://doi.org/10.1007/BF03166574
M.K. Bowman, A.G. Maryasov, N. Kim, V.J. DeRose, Appl. Magn. Reson. 26(1–2), 23 (2004). https://doi.org/10.1007/BF03166560
V. Vishnevskiy, T. Gass, G. Szekely, C. Tanner, O. Goksel, IEEE Trans. Med. Imaging 36(2), 385–395 (2017). https://doi.org/10.1109/TMI.2016.2610583
C.L. Lawson, R.J. Hanson, Solving Least Squares Problems. Classics in Applied Mathematics, vol. 15 (SIAM, Philadelphia, 1995)
G.C. Borgia, R.J.S. Brown, P. Fantazzini, J. Magn. Reson. 132(1), 65–77 (1998). https://doi.org/10.1006/jmre.1998.1387
V. Bortolotti, R.J.S. Brown, P. Fantazzini, G. Landi, F. Zama, Inverse Probl. 33(1), 015003 (2016). https://doi.org/10.1088/1361-6420/33/1/015003
T.H. Edwards, S. Stoll, J. Magn. Reson. 288, 58–68 (2018). https://doi.org/10.1016/j.jmr.2018.01.021
A. Doll, G. Jeschke, J. Magn. Reson. 246, 18–26 (2014). https://doi.org/10.1016/j.jmr.2014.06.016
R. Tschaggelar, F.D. Breitgoff, O. Oberhänsli, M. Qi, A. Godt, G. Jeschke, Appl. Magn. Reson. 48(11–12), 1273–1300 (2017). https://doi.org/10.1007/s00723-017-0956-z
O. Debus, H. Zimmermann, E. Bartsch, F. Fujara, M. Kiebel, W. Petry, H. Sillescu, Chem. Phys. Lett. 180(3), 271–274 (1991). https://doi.org/10.1016/0009-2614(91)87152-2
P.J. Simpson, T.P. Monie, A. Szendröi, N. Davydova, J.K. Tyzack, M.R. Conte, C.M. Read, P.D. Cary, D.I. Svergun, P.V. Konarev, S. Curry, S. Matthews, Structure 12(9), 1631–1643 (2004). https://doi.org/10.1016/j.str.2004.07.008
F. Todone, P. Brick, F. Werner, R.O.J. Weinzierl, S. Onesti, Mol. Cell 8(5), 1137–1143 (2001). https://doi.org/10.1016/S1097-2765(01)00379-3
F.C. Oberstrass, S.D. Auweter, M. Erat, Y. Hargous, A. Henning, P. Wenter, L. Reymond, B. Amir-Ahmady, S. Pitsch, D.L. Black, F.H.T. Allain, Science 309(5743), 2054–2057 (2005). https://doi.org/10.1126/science.1114066
C. Gmeiner, G. Dorn, F.H.T. Allain, G. Jeschke, M. Yulikov, Phys. Chem. Chem. Phys. 19(41), 28360–28380 (2017). https://doi.org/10.1039/C7CP05822E
C. Gmeiner, D. Klose, E. Mileo, V. Belle, S.R.A. Marque, G. Dorn, F.H.T. Allain, B. Guigliarelli, G. Jeschke, M. Yulikov, J. Phys. Chem. Lett. 8(19), 4852–4857 (2017). https://doi.org/10.1021/acs.jpclett.7b02220
D. Klose, J.P. Klare, D. Grohmann, C.W.M. Kay, F. Werner, H.J. Steinhoff, PLoS One 7(6), e39492 (2012). https://doi.org/10.1371/journal.pone.0039492
F. Werner, R.O.J. Weinzierl, Mol. Cell 10(3), 635–646 (2002). https://doi.org/10.1016/S1097-2765(02)00629-9
E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R.D. Appel, A. Bairoch, Nucleic Acids Res. 31(13), 3784–3788 (2003). https://doi.org/10.1093/nar/gkg563
A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, Oxford, 2002), p. 01150
G. Jeschke, Protein Sci. 27(1), 76–85 (2017). https://doi.org/10.1002/pro.3269
D. di Serafino, V. Ruggiero, G. Toraldo, L. Zanni, Appl. Math. Comput. 318, 176–195 (2018). https://doi.org/10.1016/j.amc.2017.07.037
U. Hämarik, U. Tautenhahn, BIT Numer. Math. 41(5), 1029–1038 (2001). https://doi.org/10.1023/A:1021945429767