Turning water into a protonic diode and solar cell via doping and dye sensitization

Joule - Tập 5 - Trang 2380-2394 - 2021
Leanna Schulte1, William White1, Lawrence A. Renna1, Shane Ardo1,2,3
1Department of Chemistry, University of California, Irvine, Irvine, CA 92697 USA
2Department of Chemical & Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA
3Department of Materials Science & Engineering, University of California, Irvine, Irvine, CA 92697, USA

Tài liệu tham khảo

Shockley, 1949, The theory of p-n junctions in semiconductors and p-n junction transistors, Bell Syst. Tech. J., 28, 435, 10.1002/j.1538-7305.1949.tb03645.x Hussey, 1953, Semiconductor diode gates, Bell Syst. Tech. J., 32, 1137, 10.1002/j.1538-7305.1953.tb01452.x Chapin, 1954, A new silicon p-n junction photocell for converting solar radiation into electrical power, J. Appl. Phys., 25, 676, 10.1063/1.1721711 Pierret, 1996 Sze, 2006 Würfel, 2005 Fonash, 2010 Bockris, 1973 Bard, 2001 Guan, 2011, Field-effect reconfigurable nanofluidic ionic diodes, Nat. Commun., 2, 506, 10.1038/ncomms1514 Van De Burgt, 2017, A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing, Nat. Mater., 16, 414, 10.1038/nmat4856 Kong, 2000, Nanotube molecular wires as chemical sensors, Science, 287, 622, 10.1126/science.287.5453.622 Wang, 2016, Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%, Nat. Mater., 15, 611, 10.1038/nmat4589 Tembhurne, 2019, A thermally synergistic photo-electrochemical hydrogen generator operating under concentrated solar irradiation, Nat. Energy, 4, 399, 10.1038/s41560-019-0373-7 Fuller, 1956, Some analogies between semiconductors and electrolyte solutions, Record of Chem. Prog., 17, 75 Lovreček, 1959, Electrolytic junctions with rectifying properties, J. Phys. Chem., 63, 750, 10.1021/j150575a030 Eigen, 1958, Self-dissociation and protonic charge transport in water and ice, Proc. R. Soc. Lond. A, 247, 505, 10.1098/rspa.1958.0208 Shimizu, 1968, The rectification effects using the ices doped with electrolytes, Bull. Chem. Soc. Jpn., 41, 2325, 10.1246/bcsj.41.2325 Langer, 1985, A protonic rectifier diode, Appl. Phys. A, 38, 59, 10.1007/BF00618728 Petrenko, 1987, Ice field transistor, J. Phys. Colloques., 48, 1 Petrenko, 1993 Maslov, 1968, Water as a semiconductor, Russ. Chem. Rev., 37, 310, 10.1070/RC1968v037n04ABEH001636 Tolbert, 2002, Excited-state proton transfer: From constrained systems to “super” photoacids to superfast proton transfer, Acc. Chem. Res., 35, 19, 10.1021/ar990109f Simons, 1978, Water dissociation in bipolar membranes: experiments and theory, J. Membrain. Biol., 38, 11, 10.1007/BF01875160 Simons, 1979, Strong electric field effects on proton transfer between membrane-bound amines and water, Nature, 280, 824, 10.1038/280824a0 Ramírez, 1992, Current-voltage curves of bipolar membranes, J. Appl. Phys., 72, 259, 10.1063/1.352124 Mafé, 1998, Electric field-assisted proton transfer and water dissociation at the junction of a fixed-charge bipolar membrane, Chem. Phys. Lett., 294, 406, 10.1016/S0009-2614(98)00877-X Craig, 2013 Yan, 2018, The balance of electric field and interfacial catalysis in promoting water dissociation in bipolar membranes, Energy Environ. Sci., 11, 2235, 10.1039/C8EE01192C Grew, 2016, Understanding transport at the acid-alkaline interface of bipolar membranes, J. Electrochem. Soc., 163, F1572, 10.1149/2.0941614jes White, 2018, Conversion of visible light into ionic power using photoacid-dye-sensitized bipolar ion-exchange membranes, Joule, 2, 94, 10.1016/j.joule.2017.10.015 Lu, 2008, State of water in perfluorosulfonic ionomer (Nafion 117) proton exchange membranes, J. Electrochem. Soc., 155, B163, 10.1149/1.2815444 Liu, 2018, CO2 electrolysis to CO and O2 at high selectivity, stability and efficiency using Sustainion membranes, J. Electrochem. Soc., 165, J3371, 10.1149/2.0501815jes Kusoglu, 2017, New insights into perfluorinated sulfonic-acid ionomers, Chem. Rev., 117, 987, 10.1021/acs.chemrev.6b00159 Talin, 2008, Unusually strong space-charge-limited current in thin wires, Phys. Rev. Lett., 101, 076802, 10.1103/PhysRevLett.101.076802 Röhr, 2018, Exploring the validity and limitations of the Mott-Gurney law for charge-carrier mobility determination of semiconducting thin-films, J. Phys. Condens. Matter, 30, 105901, 10.1088/1361-648X/aaabad White, 2017, Observation of photovoltaic action from photoacid-modified Nafion due to light-driven ion transport, J. Am. Chem. Soc., 139, 11726, 10.1021/jacs.7b00974 White, 2019, Evaluation of the role that photoacid excited-state acidity has on photovoltage and photocurrent of dye-sensitized ion-exchange membranes, Proceedings of the SPIE Phys. Chem. Semicond. Mater. Interfaces, XVIII, 110840E Reiter, 2016, Electrochemical characterization of commercial bipolar membranes under electrolyte conditions relevant to solar fuels technologies, J. Electrochem. Soc., 163, H3132, 10.1149/2.0201604jes Sanborn, 2019, Interfacial and nanoconfinement effects decrease the excited-state acidity of polymer-bound photoacids, Chem, 5, 1648, 10.1016/j.chempr.2019.04.022 Chen, 2018, Direct observation of sequential oxidations of a titania-bound molecular proxy catalyst generated through illumination of molecular sensitizers, Nat. Chem., 10, 17, 10.1038/nchem.2892 Luo, 2021, Clarification of Mechanisms of Protonic Photovoltaic Action Initiated by Photoexcitation of Strong Photoacids Covalently Bound to Hydrated Nafion Cation-Exchange Membranes Wetted by Aqueous Electrolytes, Energy & Environmental Science, 10.1039/D1EE00482D Strandberg, 2015, Theoretical efficiency limits for thermoradiative energy conversion, J. Appl. Phys., 117, 055105, 10.1063/1.4907392 Deppe, 2020, Nighttime photovoltaic cells: electrical power generation by optically coupling with deep space, ACS Photonics, 7, 1, 10.1021/acsphotonics.9b00679 Su, 2019, Photoacid-modified Nafion membrane morphology determined by resonant X-ray scattering and spectroscopy, ACS Macro Lett, 8, 1353, 10.1021/acsmacrolett.9b00622 Grew, 2020, Stability & kinetics of the bipolar membrane interface: implications for electrochemical technologies, J. Electrochem. Soc., 167, 164513, 10.1149/1945-7111/abcb41 Moerner, 2001, Photorefractive polymers, 6961 Pockett, 2019, Origin of exceptionally slow light soaking effect in mesoporous carbon perovskite solar cells with AVA additive, J. Phys. Chem. C, 123, 11414, 10.1021/acs.jpcc.9b01058 Green, 1976, The depletion layer collection efficiency for p-n junction, Schottky diode, and surface insulator solar cells, J. Appl. Phys., 47, 547, 10.1063/1.322658 Reichman, 1981, Collection efficiency of low-mobility solar cells, Appl. Phys. Lett., 38, 251, 10.1063/1.92333 Kumar, 1990, Short-wavelength spectral response properties of semiconductor/liquid junctions, J. Phys. Chem., 94, 6002, 10.1021/j100378a070 Tybrandt, 2012, Logic gates based on ion transistors, Nat. Commun., 3, 871, 10.1038/ncomms1869 Kim, 2017, Smartphone-based low light detection for bioluminescence application, Sci. Rep., 7, 40203, 10.1038/srep40203 Blommaert, 2019, Electrochemical impedance spectroscopy as a performance indicator of water dissociation in bipolar membranes, J. Mater. Chem. A, 7, 19060, 10.1039/C9TA04592A