Turbulent Dynamics of a Critically Reflecting Internal Gravity Wave

Theoretical and Computational Fluid Dynamics - Tập 11 - Trang 281-303 - 1998
Donald N. Slinn1, J.J. Riley1
1Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, U.S.A., , US

Tóm tắt

Results from computational fluid dynamics experiments of internal wave reflection from sloping boundaries are presented. In these experiments the incident wave lies in a plane normal to the slope. When the angle of wave energy propagation is close to the bottom slope the reflection causes wave breakdown into a quasi-periodic, turbulent boundary layer. Boundary layer energetics and vorticity dynamics are examined and indicate the importance of the three-dimensional turbulence. The boundary layer exhibits intermittent turbulence: approximately every 1.2 wave periods the boundary layer mixes energetically for a duration of about one-third of a wave period, and then it restratifies until the next mixing event. Throughout the wave cycle a strong thermal front is observed to move upslope at the phase speed of the incident waves. Simulations demonstrate that the net effects of turbulent mixing are not confined to the boundary layer, but are communicated to the interior stratified fluid by motions induced by buoyancy effects and by the wave field, resulting in progressive weakening of the background density gradient. Transition to turbulence is determined to occur at Reynolds numbers of approximately 1500, based upon the wavelength and maximum current velocity of the oncoming wave train. The boundary layer thickness depends on the Reynolds number for low Richardson numbers, with a characteristic depth of approximately one-half of the vertical wavelength of the oncoming wave.