Turán type inequalities for the q-exponential functions

Arabian Journal of Mathematics - Tập 6 - Trang 309-314 - 2017
Khaled Mehrez1,2
1Département de Mathématiques, ISSATK, Kairouan, Tunisia
2Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia

Tóm tắt

In this paper, our aim is to deduce some sharp Turán type inequalities for the remainder q-exponential functions. Our results are shown to be generalizations of results which were obtained by Alzer (Arch Math 55, 462–464, 1990).

Tài liệu tham khảo

Alzer, H.: An inequality for the exponential function. Arch. Math. 55, 462–464 (1990) Baricz, Á.: Turán type inequalities for generalized complete elliptic integrals. Math. Z. 256, 895–911 (2007) Baricz, Á.: Functional inequalities involving Bessel and modified Bessel functions of the first kind. Expo. Math. 26, 279–293 (2008) Gasper, G., Rahman, M.: Basic hypergeometric series. Encyclopedia of Mathematics and its Applications, 2nd edn. Cambridge University Press, Cambridge (1990) Koornwinder, T.H.; Swarttouw, R.F.: On q-analogues of the Hankel and Fourier transforms. Trans. Am. Math. Soc. 333, 445–461 (1992) Mehrez, K., Sitnik, S.M.: Proofs of some conjectures on monotonicity of ratios of Kummer and Gauss hypergeometric functions and related Turán type inequalities. arXiv:1410.6120v2 [math.CA], 8 pp, (2014) Mehrez, K., Sitnik, S.M.: Monotonicity of ratios of q-Kummer confluent Hypergeometric and q-hypergeometric Functions and associated Turán types inequalities. arXiv:1412.1634v1, [math.CA], p. 9, (2014) Mehrez, K., ben Said, M., El Kamel, J.: Turán type inequalities for Dunkl kernel and q-Dunkl kernel. arXiv:1503.04285 [math.CA] Sitnik, S.M., Mehrez, K.: Proofs of some conjectures on monotonicity of ratios of Kummer, Gauss and generalized hypergeometric functions. Analysis 36(4), 263–268 (2016) Szegö, G.: On an inequality of P. Turán concerning Legendre polynomials. Bull. Amer. Math. Soc. 54, 401–405 (1948) Turán, P.: On the zeros of the polynomials of Legendre. Casopis Pest. Mat. Fys. 75, 113–122 (1950)