Tuning the strength and swelling of an injectable polysaccharide hydrogel and the subsequent release of a broad spectrum bacteriocin, nisin A

Journal of Materials Chemistry B - Tập 8 Số 18 - Trang 4029-4038
James Flynn1,2,3,4, Edel Durack1,2,3,4, Maurice N. Collins5,6,7, Sarah P. Hudson1,2,3,4
1Bernal Institute
2Department of Chemical Sciences, SSPC, SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Co., Limerick, Ireland
3SFI Research Centre for Pharmaceuticals
4University of Limerick, Co.
5Bernal Institute, School of Engineering, University of Limerick, Co., Limerick, Ireland
6Ireland
7Limerick.

Tóm tắt

Balance of glycol chitosan content and crosslink density modulates injectable gel swelling, strength and the release of an antimicrobial peptide.

Từ khóa


Tài liệu tham khảo

WHO, 2016, DOI: https://www.who.int/docs/default-source/searo/amr/global-antimicrobial-resistance-surveillance-system-(glass)-report-early-implementation-2016-2017.pdf?sfvrsn=ea19cc4a_2

Tacconelli, 2018, Lancet Infect. Dis., 18, 318, 10.1016/S1473-3099(17)30753-3

WHO, 2017, entity/medicines/areas/rational_use/antibacterial_agents_clinical_development/en/index.html

Marston, 2016, JAMA, J. Am. Med. Assoc., 316, 1193, 10.1001/jama.2016.11764

A. Fleming , in Les Prix Nobel en 1945 , ed. A. Holmberg , Nobel Foundation , Stockholm , 1946

Martens, 2017, J. Antibiot., 70, 520, 10.1038/ja.2017.30

C. J. Michele , J.Langer and L.Slawomirski , Antimicrobial Resistance in G7 Counries and Beyond: Economic Issues, Policies and Options for Action , OECD , 2015

Malani, 2014, JAMA, J. Am. Med. Assoc., 311, 1438, 10.1001/jama.2014.1666

Hui, 2016, Sex. Transm. Infect., 93, 221, 10.1136/sextrans-2016-052738

Aguirre, 2016, Adv. Drug Delivery Rev., 106, 223, 10.1016/j.addr.2016.02.004

Kuwano, 2005, Int. J. Antimicrob. Agents, 26, 396, 10.1016/j.ijantimicag.2005.08.010

Severina, 1998, J. Antimicrob. Chemother., 41, 341, 10.1093/jac/41.3.341

Bartoloni, 2004, J. Chemother., 16, 119, 10.1179/joc.2004.16.2.119

Shin, 2016, J. Appl. Microbiol., 120, 1449, 10.1111/jam.13033

Aranha, 2004, Contraception, 69, 333, 10.1016/j.contraception.2003.11.002

Joo, 2012, Cancer Med., 1, 295, 10.1002/cam4.35

Valenta, 1996, J. Pharm. Pharmacol., 48, 988, 10.1111/j.2042-7158.1996.tb06019.x

Ugurlu, 2007, Eur. J. Pharm. Biopharm., 67, 202, 10.1016/j.ejpb.2007.01.016

van Staden, 2012, J. Appl. Microbiol., 112, 831, 10.1111/j.1365-2672.2012.05241.x

Dill, 2013, J. Colloid Interface Sci., 395, 300, 10.1016/j.jcis.2013.01.002

Jung, 2007, J. Appl. Polym. Sci., 105, 2816, 10.1002/app.25594

Correia, 2015, World J. Microbiol. Biotechnol., 31, 649, 10.1007/s11274-015-1819-0

Yamakami, 2013, Pharm. Biol., 51, 267, 10.3109/13880209.2012.717227

R. Barbucci , Hydrogels , Springer , Milan, Milano , 2009

Bai, 2018, Bioactive Mater., 3, 401, 10.1016/j.bioactmat.2018.05.006

Liu, 2017, Bone Res., 5, 17014, 10.1038/boneres.2017.14

Zamboni, 2018, Prog. Mater. Sci., 97, 97, 10.1016/j.pmatsci.2018.04.003

Murphy, 2018, Appl. Mater. Today, 12, 51, 10.1016/j.apmt.2018.04.002

Ko, 2013, Prog. Polym. Sci., 38, 672, 10.1016/j.progpolymsci.2012.08.002

Zamboni, 2017, Int. J. Pharm., 521, 346, 10.1016/j.ijpharm.2017.02.063

Bakaic, 2015, RSC Adv., 5, 35469, 10.1039/C4RA13581D

Hudson, 2010, Biomaterials, 31, 1444, 10.1016/j.biomaterials.2009.11.016

Varshosaz, 2012, Exp. Opin. Drug Delivery, 9, 509, 10.1517/17425247.2012.673580

Markovsky, 2012, J. Controlled Release, 161, 446, 10.1016/j.jconrel.2011.12.021

Kosmala, 2000, Biomaterials, 21, 2019, 10.1016/S0142-9612(00)00057-0

Kim, 2000, J. Biomed. Mater. Res., 49, 517, 10.1002/(SICI)1097-4636(20000315)49:4<517::AID-JBM10>3.0.CO;2-8

Jeanes, 1950, J. Am. Chem. Soc., 72, 2655, 10.1021/ja01162a086

Maia, 2011, Polymer, 52, 258, 10.1016/j.polymer.2010.11.058

Yuan, 2006, J. Chem. Technol. Biotechnol., 81, 746, 10.1002/jctb.1442

Augst, 2006, Macromol. Biosci., 6, 623, 10.1002/mabi.200600069

Bajpai, 2008, Polym. Int., 57, 57, 10.1002/pi.2311

Kuo, 2008, J. Biomed. Mater. Res., Part A, 84, 899, 10.1002/jbm.a.31375

Karvinen, 2019, Mater. Sci. Eng., C, 94, 1056, 10.1016/j.msec.2018.10.048

Karvinen, 2018, React. Funct. Polym., 124, 29, 10.1016/j.reactfunctpolym.2017.12.019

Sharma, 2018, ACS Appl. Mater. Interfaces, 10, 30936, 10.1021/acsami.8b07310

Tamer, 2017, Carbohydr. Polym., 169, 441, 10.1016/j.carbpol.2017.04.027

T. Jiang , R.James , S. G.Kumbar and C. T.Laurencin , in Natural and Synthetic Biomedical Polymers , ed. S. G. Kumbar , C. T. Laurencin and M. Deng , Elsevier , Oxford , 2014 , pp. 91–113 10.1016/B978-0-12-396983-5.00005-3

Zhu, 2015, React. Funct. Polym., 91–92, 71, 10.1016/j.reactfunctpolym.2015.04.009

Marques, 2011, Dissolution Technol., 18, 15, 10.14227/DT180311P15

Bannigan, 2018, Int. J. Pharm., 552, 180, 10.1016/j.ijpharm.2018.09.012

Flynn, 2019, J. Colloid Interface Sci., 537, 396, 10.1016/j.jcis.2018.11.037

Collins, 2008, J. Mater. Sci.: Mater. Med., 19, 3335

De Groot, 2001, Biomaterials, 22, 1197, 10.1016/S0142-9612(00)00266-0

Cadée, 2000, J. Biomed. Mater. Res., 50, 397, 10.1002/(SICI)1097-4636(20000605)50:3<397::AID-JBM14>3.0.CO;2-A

George, 2006, J. Controlled Release, 114, 1, 10.1016/j.jconrel.2006.04.017

Li, 2016, Nat. Rev. Mater., 1, 16071, 10.1038/natrevmats.2016.71

Feng, 2012, Soft Matter, 8, 11723, 10.1039/c2sm26572a

Nisato, 1999, Langmuir, 15, 4236, 10.1021/la981027n

He, 2017, Food Control, 79, 349, 10.1016/j.foodcont.2017.04.012

Rabea, 2003, Biomacromolecules, 4, 1457, 10.1021/bm034130m

Stephen Inbaraj, 2012, Sci. Technol. Adv. Mater., 13, 015002, 10.1088/1468-6996/13/1/015002

Jeon, 2014, PLoS One, 9, e92723, 10.1371/journal.pone.0092723

Yang, 2013, Biomacromolecules, 14, 4447, 10.1021/bm401364z

Liu, 2015, Colloids Surf., B, 128, 140, 10.1016/j.colsurfb.2015.02.005

Straccia, 2015, Mar. Drugs, 13, 2890, 10.3390/md13052890

Artzi, 2011, Nat. Mater., 10, 890, 10.1038/nmat3095

Van Tomme, 2007, Expert Rev. Med. Devices, 4, 147, 10.1586/17434440.4.2.147

Ritz, 2018, Gels, 4, 63, 10.3390/gels4030063

Rottensteiner, 2014, Materials, 7, 1957, 10.3390/ma7031957