Tuning the oxygen vacancies and mass transfer of porous conductive ceramic supported IrOx catalyst via polyether-derived composite oxide pyrolysis: Toward a highly efficient oxygen evolution reaction catalyst for water electrolysis
Tóm tắt
Slow oxygen evolution reaction (OER) and material transport impedance in catalyst-coated membrane (CCM) are major challenges for the practical proton exchange membrane water electrolyzer (PEMWE). Herein, we present a novel OER catalyst by polyether-derived composite oxide pyrolysis with a multilevel porous support and abundant oxygen vacancies to boost efficiency and durability in water electrolysis. The formation of a heterointerface with abundant oxygen vacancies in IrOx improves the catalytic activity and prevents IrOx from peroxidation. Furthermore, the unique pore structure of the support facilitates the mass transport of the anode catalyst layer during water electrolysis at high current density, and the mass transport resistance of the water electrolyzer is only 0.0154 Ω cm2 at 1.5 A cm−2. When used in a PEMWE, the prepared electrocatalysts have an impressive electrochemical performance of 1.87 V at 3·A cm−2 with an Ir loading of only 0.91 mg cm−2. This approach highlights the importance of oxygen vacancies and transportation in the catalyst-support interface, providing a promising solution for high-rate practical water electrolysis.
Efficient OER supported catalysts enriched with oxygen vacancies for PEMWE applications
Từ khóa
Tài liệu tham khảo
Xia YN, Cheng Y, Wang R, Meng ZH, Meyer Q, Zhao C, Zhang HN, Luo R, Li Y, Tang HL (2023) Porous nanosheet composite with multi-type active centers as an efficient and stable oxygen electrocatalyst in alkaline and acid conditions. Sci China Mater 66(4):1407–1416. https://doi.org/10.1007/s40843-022-2272-2
Li H, Xu Y, Lv N, Zhang Q, Zhang X, Wei Z, Wang Y, Tang H, Pan H (2023) Ti-doped SnO2 supports IrO2 electrocatalysts for the oxygen evolution reaction (OER) in PEM water electrolysis. Acs Sustain Chem Eng 11(3):1121–1132. https://doi.org/10.1021/acssuschemeng.2c06368
Lim A, Kim J, Lee HJ, Kim H-J, Yoo SJ, Jang JH, Park HY, Sung Y-E, Park HS (2020) Low-loading IrO2 supported on Pt for catalysis of PEM water electrolysis and regenerative fuel cells. Appl Catal B: Environ 272:118955. https://doi.org/10.1016/j.apcatb.2020.118955
Zheng S, Zhao S, Tan H, Wang R, Zhai M, Zhang H, Qin H, Tang H (2023) Construction of reliable ion-conducting channels based on the perfluorinated anion-exchange membrane for high-performance pure-water-fed electrolysis. Adv Compos Hybrid Mater 6(3):89. https://doi.org/10.1007/s42114-023-00657-w
Carmo M, Fritz DL, Merge J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38(12):4901–4934. https://doi.org/10.1016/j.ijhydene.2013.01.151
Kibsgaard J, Chorkendorff I (2019) Considerations for the scaling-up of water splitting catalysts. Nat Energy 4(6):430–433. https://doi.org/10.1038/s41560-019-0407-1
Wang R, Meng ZH, Yan XM, Tian T, Lei M, Pashameah RA, Abo-Dief HM, Algadi H, Huang NN, Guo ZH, Tang HL (2023) Tellurium intervened Fe-N codoped carbon for improved oxygen reduction reaction and high-performance Zn-air batteries. J Mater Sci Technol 137:215–222. https://doi.org/10.1016/j.jmst.2022.07.041
Dzheldybaeva IM, Kairbekov ZK, Esenalieva MZZ, Kairbekov AZ, Suimbaeva SM, Abilmazhinova DZA (2023) Humic acid modified applied palladium catalysts for nitro compounds reduction. Eng Sci 26:1001. https://doi.org/10.30919/es1001
Huang G, Yang Q, Xu Q, Yu S-H, Jiang H-L (2016) Polydimethylsiloxane coating for a palladium/MOF composite: Highly improved catalytic performance by surface hydrophobization. Angew Chem Int Ed 55(26):7379–7383. https://doi.org/10.1002/anie.201600497
Wang Z, Wang WZ, Zhang L, Jiang D (2016) Surface oxygen vacancies on Co3O4 mediated catalytic formaldehyde oxidation at room temperature. Catal Sci Technol 6(11):3845–3853. https://doi.org/10.1039/c5cy01709b
Fang J, Xie K, Kang Q, Gou Y (2022) Facile fabrication of g-C3N4/CdS heterojunctions with enhanced visible-light photocatalytic degradation performances. J Sci: Adv Mater Dev 7(1):100409. https://doi.org/10.1016/j.jsamd.2021.100409
Natarajan VK, Madaswamy SL, Krishnamoorthy N, Ramamoorthy G, Dhanusuraman R (2023) Ultrasonication-assisted synthesis of nickel tungstate decorated on polydimethoxyaniline nanocomposite catalyst for potential direct methanol fuel cell application. ES Energy Environ 21:926. https://doi.org/10.30919/esee926
Oakton E, Lebedev D, Povia M, Abbott DF, Fabbri E, Fedorov A, Nachtegaal M, Coperet C, Schmidt TJ (2017) IrO2-TiO2: a high-surface-area, active, and stable electrocatalyst for the oxygen evolution reaction. ACS Catal 7(4):2346–2352. https://doi.org/10.1021/acscatal.6b03246
Chen J, Cui P, Zhao G, Rui K, Lao M, Chen Y, Zheng X, Jiang Y, Pan H, Dou SX, Sun W (2019) Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution. Angew Chem Int Ed 58(36):12540–12544. https://doi.org/10.1002/anie.201907017
Lee C, Shin K, Park Y, Yun YH, Doo G, Jung GH, Kim M, Cho W-C, Kim C-H, Lee HM, Kim HY, Lee S, Henkelman G, Cho H-S (2023) Catalyst-support interactions in Zr2ON2-supported IrOx electrocatalysts to break the trade-off relationship between the activity and stability in the acidic oxygen evolution reaction. Adv Func Mater 33(25):2301557. https://doi.org/10.1002/adfm.202301557
Lv H, Zuo J, Zhou W, Shen X, Li B, Yang D, Liu Y, Jin L, Zhang C (2019) Synthesis and activities of IrO2/Ti1−xWxO2 electrocatalyst for oxygen evolution in solid polymer electrolyte water electrolyzer. J Electroanal Chem 833:471–479. https://doi.org/10.1016/j.jelechem.2018.12.008
Grimaud A, Diaz-Morales O, Han B, Hong WT, Lee Y-L, Giordano L, Stoerzinger KA, Koper MTM, Shao-Horn Y (2017) Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat Chem 9(8):457. https://doi.org/10.1038/nchem.2819
Zhang N, Chai Y (2021) Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation. Energy Environ Sci 14(9):4647–4671. https://doi.org/10.1039/d1ee01277k
Wang X, Zhong H, Xi S, Lee WSV, Xue J (2022) Understanding of oxygen redox in the oxygen evolution reaction. Adv Mater 34(50):2107956. https://doi.org/10.1002/adma.202107956
Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martinez JI, Inoglu NG, Kitchin J, Jaramillo TF, Norskov JK, Rossmeisl J (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3(7):1159–1165. https://doi.org/10.1002/cctc.201000397
Kuo D-Y, Kawasaki JK, Nelson JN, Kloppenburg J, Hautier G, Shen KM, Schlom DG, Suntivich J (2017) Influence of surface adsorption on the oxygen evolution reaction on IrO2(110). J Am Chem Soc 139(9):3473–3479. https://doi.org/10.1021/jacs.6b11932
Shi Z, Wang Y, Li J, Wang X, Wang Y, Li Y, Xu W, Jiang Z, Liu C, Xing W, Ge J (2021) Confined Ir single sites with triggered lattice oxygen redox: Toward boosted and sustained water oxidation catalysis. Joule 5(8):2164–2176. https://doi.org/10.1016/j.joule.2021.05.018
Han B, Risch M, Belden S, Lee S, Bayer D, Mutoro E, Shao-Horn Y (2018) Screening oxide support materials for OER catalysts in acid. J Electrochem Soc 165(10):F813. https://doi.org/10.1149/2.0921810jes
Luo Y, Zhang Z, Chhowalla M, Liu B (2022) Recent advances in design of electrocatalysts for high-current-density water splitting. Adv Mater 34(16):2108133. https://doi.org/10.1002/adma.202108133
Zhao S, Wang R, Tian T, Liu H, Zhang H, Tang H (2022) Self-assembly-cooperating in situ construction of MXene-CeO2 as hybrid membrane coating for durable and high-performance proton exchange membrane fuel cell. Acs Sustain Chem Eng 10(13):4269–4278. https://doi.org/10.1021/acssuschemeng.2c00087
Lu Z, Li Y, Lei X, Liu J, Sun X (2015) Nanoarray based “superaerophobic” surfaces for gas evolution reaction electrodes. Mater Horiz 2:294–298
Böhm D, Beetz M, Schuster M, Peters K, Hufnagel AG, Döblinger M, Böller B, Bein T, Fattakhova-Rohlfing D (2020) Efficient OER catalyst with low Ir volume density obtained by homogeneous deposition of iridium oxide nanoparticles on macroporous antimony-doped tin oxide support. Adv Func Mater 30(1):1906670. https://doi.org/10.1002/adfm.201906670
Wang Y, Djerdj I, Smarsly B, Antonietti M (2009) Antimony-doped SnO2 nanopowders with high crystallinity for lithium-ion battery electrode. Chem Mater 21(14):3202–3209. https://doi.org/10.1021/cm9007014
Liu Z, Lu Y, Cui Z, Qi R (2023) Coaxial nanofiber IrOX@SbSnOX as an efficient electrocatalyst for proton exchange membrane dehumidifier. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.2c18375
Li W, Lv J, Liu D, Cai W, Chen X, Huang Q, Wang L, Wang B (2023) Engineering oxygen vacancies in IrOX clusters supported on metal-organic framework derived porous CeO2 for enhanced oxygen evolution in acidic media. Chem Mater 35(10):3892–3901. https://doi.org/10.1021/acs.chemmater.2c03723
Tong J, Liu Y, Peng Q, Hu W, Wu Q (2017) An efficient Sb-SnO2-supported IrO2 electrocatalyst for the oxygen evolution reaction in acidic medium. J Mater Sci 52(23):13427–13443. https://doi.org/10.1007/s10853-017-1447-1
Isomura N, Takahashi N, Kosaka S (2022) Distinguishing Sb-containing sites in SnO2 using spectrum simulation of X-ray absorption spectroscopy. Jap J Appl Phys 61(4). https://doi.org/10.35848/1347-4065/ac5add
Li M-J, Cheng P, Luo G-Q, Schoenung JM, Shen Q (2015) Effects of Sb oxidation state on the densification and electrical properties of antimony-doped tin oxide ceramics. J Mater Sci Mater Electron 26(6):4015–4020. https://doi.org/10.1007/s10854-015-2938-y
Atanasoska L, Atanasoski R, Trasatti S (1990) XPS and AES study of mixed layers of RuO2 and IrO2. Vacuum 40(1):91–94. https://doi.org/10.1016/0042-207X(90)90127-K
Wang Z, Lin R, Huo Y, Li H, Wang L (2022) Formation, detection, and function of oxygen vacancy in metal oxides for solar energy conversion. Adv Func Mater 32(7):2109503. https://doi.org/10.1002/adfm.202109503
Sun W, Zhou S, You B, Wu L (2012) Facile fabrication and high photoelectric properties of hierarchically ordered porous TiO2. Chem Mater 24(19):3800–3810. https://doi.org/10.1021/cm302464g
Nhan NH, Oh H-S, Reier T, Willinger E, Willinger M-G, Petkov V, Teschner D, Strasser P (2015) Oxide-supported IrNiOx core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting. Angew Chem Int Ed 54(10):2975–2979. https://doi.org/10.1002/anie.201411072
Kibasomba PM, Dhlamini S, Maaza M, Liu C-P, Rashad MM, Rayan DA, Mwakikunga BW (2018) Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: the revisiting of the Williamson-Hall plot method. Res Phys 9:628–635. https://doi.org/10.1016/j.rinp.2018.03.008
Gregg SJ, Sing KSW, Salzberg HW (1967) Adsorption surface area and porosity. J Electrochem Soc 114(11):279Ca. https://doi.org/10.1149/1.2426447
Li F, Wu N, Kimura H, Wang Y, Xu BB, Wang D, Li Y, Algadi H, Guo Z, Du W, Hou C (2023) Initiating binary metal oxides microcubes electromagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nano-Micro Lett 15(1):220. https://doi.org/10.1007/s40820-023-01197-0
Zhang X, Yang Y, Lv X, Wang Y, Liu N, Chen D, Cui L (2019) Adsorption/desorption kinetics and breakthrough of gaseous toluene for modified microporous-mesoporous UiO-66 metal organic framework. J Hazard Mater 366:140–150. https://doi.org/10.1016/j.jhazmat.2018.11.099
Zhao Y-Q, Lu M, Tao P-Y, Zhang Y-J, Gong X-T, Yang Z, Zhang G-Q, Li H-L (2016) Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J Power Sources 307:391–400. https://doi.org/10.1016/j.jpowsour.2016.01.020
Ahmad ZU, Yao L, Wang J, Gang DD, Islam F, Lian Q, Zappi ME (2019) Neodymium embedded ordered mesoporous carbon (OMC) for enhanced adsorption of sunset yellow: Characterizations, adsorption study and adsorption mechanism. Chem Eng J 359:814–826. https://doi.org/10.1016/j.cej.2018.11.174
Lei C, Pi M, Jiang C, Cheng B, Yu J (2017) Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red. J Colloid Interface Sci 490:242–251. https://doi.org/10.1016/j.jcis.2016.11.049
Hou C, Yang W, Kimura H, Xiubo X, Zhang X, Sun X, Yu Z, Yang X, Zhang Y, Wang B, Xu B, Sridhar D, Algadi H, Guo Z, Du W (2022) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol 142:185–195. https://doi.org/10.1016/j.jmst.2022.10.007
Li F, Li QY, Kimura H, Xie X, Zhang X, Wu N, Sun X, Xu BB, Algadi H, Pashameah RA, Alanazi AK, Alzahrani E, Li H, Du W, Guo Z, Hou C-X (2022) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. J Mater Sci Technol 148:250–259. https://doi.org/10.1016/j.jmst.2022.12.003
Okolo GN, Everson RC, Neomagus HWJP, Roberts MJ, Sakurovs R (2015) Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques. Fuel 141:293–304. https://doi.org/10.1016/j.fuel.2014.10.046
Mourdikoudis S, Liz-Marzan LM (2013) Oleylamine in nanoparticle synthesis. Chem Mater 25(9):1465–1476. https://doi.org/10.1021/cm4000476
Wu NL, Wang SY, Rusakova IA (1999) Inhibition of crystallite growth in the sol-gel synthesis of nanocrystalline metal oxides. Science (New York, N.Y.) 285(5432):1375–1377. https://doi.org/10.1126/science.285.5432.1375
Chen G, Chen X, Yue PL (2002) Electrochemical behavior of novel Ti/IrOx−Sb2O5−SnO2 anodes. J Phys Chem B 106(17):4364–4369. https://doi.org/10.1021/jp013547o
Guoqiang L, Songtao L, Meiling X, Junjie G, Changpeng L, Wei X (2017) Nanoporous IrO2 catalyst with enhanced activity and durability for water oxidation owing to its micro/mesoporous structure. Nanoscale 9(27):9291–9298
Anantharaj S, Ede SR, Karthick K, Sankar SS, Sangeetha K, Karthik PE, Kundu S (2018) Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment. Energy Environ Sci 11(4):744–771. https://doi.org/10.1039/c7ee03457a
Luo R, Wang R, Meng ZH, Xia YN, Tang HL (2023) Dysprosium-induced FeN0.0324-Dy2O3 sites with efficient bifunctional oxygen electrocatalytic reactions for Zn-air batteries. Adv Compos Hybrid Mater 6(3). https://doi.org/10.1007/s42114-023-00685-6
Zhou Q, Chen Y, Zhao G, Lin Y, Yu Z, Xu X, Wang X, Liu HK, Sun W, Dou SX (2018) Active-site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction. Acs Catal 8(6):5382. https://doi.org/10.1021/acscatal.8b01332
Singh TI, Maibam A, Cha DC, Yoo S, Babarao R, Lee SU, Lee S (2022) High-alkaline water-splitting activity of mesoporous 3D heterostructures: an amorphous-shell@crystalline-core nano-assembly of Co-Ni-phosphate ultrathin-nanosheets and V- doped cobalt-nitride nanowires. Adv Sci 9(23):2201311. https://doi.org/10.1002/advs.202201311
Wang DD, Ruan SS, Ma PY, Wang RY, Ding XL, Zuo M, Zhang LD, Zhang ZR, Zeng J, Bao J (2023) Confinement synergy at the heterointerface for enhanced oxygen evolution. Nano Res. https://doi.org/10.1007/s12274-023-5514-4
Minguzzi A, Fan F-RF, Vertova A, Rondinini S, Bard AJ (2012) Dynamic potential–pH diagrams application to electrocatalysts for water oxidation. Chem Sci 3(1):217–229. https://doi.org/10.1039/C1SC00516B
Meng Z, Chen N, Cai S, Wu J, Wang R, Tian T, Tang H (2021) Rational design of hierarchically porous Fe-N-doped carbon as efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Res 14:4768–4775
Lin Y-Y, Lee H-Y, Ku C-S, Chou L-W, Wu AT (2013) Bandgap narrowing in high dopant tin oxide degenerate thin film produced by atmosphere pressure chemical vapor deposition. Appl Phys Lett 102(11). https://doi.org/10.1063/1.4798253
Anantharaj S, Noda S, Driess M, Menezes PW (2021) The pitfalls of using potentiodynamic polarization curves for Tafel analysis in electrocatalytic water splitting. ACS Energy Lett 6(4):1607–1611. https://doi.org/10.1021/acsenergylett.1c00608
Xiao Z, Huang Y-C, Dong C-L, Xie C, Liu Z, Du S, Chen W, Yan D, Tao L, Shu Z, Zhang G, Duan H, Wang Y, Zou Y, Chen R, Wang S (2020) Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J Am Chem Soc 142(28):12087–12095. https://doi.org/10.1021/jacs.0c00257
Puthiyapura VK, Mamlouk M, Pasupathi S, Pollet BG, Scott K (2014) Physical and electrochemical evaluation of ATO supported IrO2 catalyst for proton exchange membrane water electrolyser. J Power Sources 269:451–460. https://doi.org/10.1016/j.jpowsour.2014.06.078
Oh H-S, Nong HN, Reier T, Gliech M, Strasser P (2015) Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chem Sci 6(6):3321–3328. https://doi.org/10.1039/c5sc00518c
Retuerto M, Pascual L, Torrero J, Salam MA, Tolosana-Moranchel Á, Gianolio D, Ferrer P, Kayser P, Wilke V, Stiber S, Celorrio V, Mokthar M, Sanchez DG, Gago AS, Friedrich KA, Peña MA, Alonso JA, Rojas S (2022) Highly active and stable OER electrocatalysts derived from Sr(2)MIrO(6) for proton exchange membrane water electrolyzers. Nat Commun 13(1):7935. https://doi.org/10.1038/s41467-022-35631-5
Hao S, Sheng H, Liu M, Huang J, Zheng G, Zhang F, Liu X, Su Z, Hu J, Qian Y, Zhou L, He Y, Song B, Lei L, Zhang X, Jin S (2021) Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers. Nat Nanotechnol 16(12):1371–1377. https://doi.org/10.1038/s41565-021-00986-1
Jiang G, Yu H, Li Y, Yao D, Chi J, Sun S, Shao Z (2021) Low-loading and highly stable membrane electrode based on an Ir@WO(x)NR ordered array for PEM water electrolysis. ACS Appl Mater Interfaces 13(13):15073–15082. https://doi.org/10.1021/acsami.0c20791
Wu Z, Chen F-Y, Li B, Yu S-W, Finfrock Y, Meira D, Yan Q, Zhu P, Chen M, Song T-W, Yin Z, Liang H-W, Zhang S, Wang G, Wang H (2022) Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat Mater 22:1–9. https://doi.org/10.1038/s41563-022-01380-5
Yan T, Chen S, Sun W, Liu Y, Pan L, Shi C, Zhang X, Huang Z-F, Zou J-J (2023) IrO2 nanoparticle-decorated Ir-doped W18O49 nanowires with high mass specific OER activity for proton exchange membrane electrolysis. ACS Appl Mater Interfaces 15(5):6912–6922. https://doi.org/10.1021/acsami.2c20529
Hegge F, Lombeck F, Cruz-Ortiz E, Bohn L, von Holst M, Kroschel M, Hübner J, Breitwieser M, Strasser P, Vierrath S (2020) Efficient and stable low iridium loaded anodes for PEM water electrolysis made possible by nanofiber interlayers. ACS Appl Energy Mater 3(9):8276–8284. https://doi.org/10.1021/acsaem.0c00735
Faustini M, Giraud M, Jones D, Roziere J, Dupont M, Porter TR, Nowak S, Bahri M, Ersen O, Sanchez C, Boissiere C, Tard C, Peron J (2019) Hierarchically structured ultraporous iridium-based materials: a novel catalyst architecture for proton exchange membrane water electrolyzers. Adv Energy Mater 9(4):1802136. https://doi.org/10.1002/aenm.201802136
Shi Z, Li J, Jiang J, Wang Y, Wang X, Li Y, Yang L, Chu Y, Bai J, Yang J, Ni J, Wang Y, Zhang L, Jiang Z, Liu C, Ge J, Xing W (2022) Enhanced acidic water oxidation by dynamic migration of oxygen species at the Ir/Nb2O5-x catalyst/support interfaces. Angew Chem Int Ed 61(52):e202212341. https://doi.org/10.1002/anie.202212341
Islam J, Kim S-K, Thien PT, Kim M-J, Cho H-S, Cho W-C, Kim C-H, Lee C, Lee JH (2021) Enhancing the activity and durability of iridium electrocatalyst supported on boron carbide by tuning the chemical state of iridium for oxygen evolution reaction. J Power Sources 512. https://doi.org/10.1016/j.jpowsour.2021.230506
Wang Y, Zhang M, Kang Z, Shi L, Shen Y, Tian B, Zou Y, Chen H, Zou X (2023) Nano-metal diborides-supported anode catalyst with strongly coupled TaOx/IrO2 catalytic layer for low-iridium-loading proton exchange membrane electrolyzer. Nat Commun 14(1):5119. https://doi.org/10.1038/s41467-023-40912-8
Gong Q, Li C, Liu Y, Ilavsky J, Guo F, Cheng X, Xie J (2021) Effects of ink formulation on construction of catalyst layers for high-performance polymer electrolyte membrane fuel cells. ACS Appl Mater Interfaces 13(31):37004–37013. https://doi.org/10.1021/acsami.1c06711
Zhang A, Zhu G, Zhai M, Zhao S, Zhu L, Ye D, Xiang Y, Tian T, Tang H (2023) Construction of catalyst layer network structure for proton exchange membrane fuel cell derived from polymeric dispersion. J Colloid Interface Sci 638:184–192. https://doi.org/10.1016/j.jcis.2023.01.132