Tuning optical properties of MOF-based thin films by changing the ligands of MOFs
Tóm tắt
Từ khóa
Tài liệu tham khảo
Epstein LI. The design of optical filters. J Opt Soc Am, 1952, 42: 806–808
Wen X, Xiong Q. A large scale perfect absorber and optical switch based on phase change material (Ge2Sb2Te5) thin film. Sci China Mater, 2016, 59: 165–172
Schulze M, Lehr D, Helgert M, et al. Transmission enhanced optical lenses with self-organized antireflective subwavelength structures for the UV range. Opt Lett, 2011, 36: 3924
Wongcharee K, Brungs M, Chaplin R, et al. Sol-gel processing by aging and pore creator addition for porous silica antireflective coatings. J Sol-Gel Sci Tech, 2002, 25: 215–221
Bernsmeier D, Polte J, Ortel E, et al. Antireflective coatings with adjustable refractive index and porosity synthesized by micelletemplated deposition of MgF2 sol particles. ACS Appl Mater Interfaces, 2014, 6: 19559–19565
Sindoro M, Yanai N, Jee AY, et al. Colloidal-sized metal–organic frameworks: synthesis and applications. Acc Chem Res, 2014, 47: 459–469
Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA, 2006, 103: 10186–10191
Murray LJ, Dinca M, Long JR. Hydrogen storage in metal–organic frameworks. Chem Soc Rev, 2009, 38: 1294–1314
Lee JY, Farha OK, Roberts J, et al. Metal–organic framework materials as catalysts. Chem Soc Rev, 2009, 38: 1450–1459
Wu S, Zhu Y, Huo Y, et al. Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci China Mater, 2017, 60: 654–663
Horcajada P, Chalati T, Serre C, et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater, 2010, 9: 172–178
Serre C, Mellot-Draznieks C, Surblé S, et al. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science, 2007, 315: 1828–1831
Kreno LE, Leong K, Farha OK, et al. Metal–organic framework materials as chemical sensors. Chem Rev, 2012, 112: 1105–1125
Wu Y, Li F, Zhu W, et al. Metal-organic frameworks with a threedimensional ordered macroporous structure: dynamic photonic materials. Angew Chem Int Ed, 2011, 50: 12518–12522
Peplow M. Materials science: the hole story. Nature, 2015, 520: 148–150
Xu X, Lu Y, Yang Y, et al. Tuning the growth of metal-organic framework nanocrystals by using polyoxometalates as coordination modulators. Sci China Mater, 2015, 58: 370–377
Patricia H, Christian S, David G, et al. Colloidal route for preparing optical thin films of nanoporous metal–organic frameworks. Adv Mater, 2009, 21: 1931–1935
Demessence A, Horcajada P, Serre C, et al. Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr). Chem Commun, 2009, 309: 7149–7151
Márquez AG, Demessence A, Platero-Prats AE, et al. Green microwave synthesis of MIL-100(Al, Cr, Fe) nanoparticles for thinfilm elaboration. Eur J Inorg Chem, 2012: 5165–5174
Redel E, Wang Z, Walheim S, et al. On the dielectric and optical properties of surface-anchored metal-organic frameworks: a study on epitaxially grown thin films. Appl Phys Lett, 2013, 103: 091903
Lu G, Hupp JT. Metal-organic frameworks as sensors: a ZIF-8 based Fabry-Perot device as a selective sensor for chemical vapors and gases. J Am Chem Soc, 2010, 132: 7832–7833
Ranft A, Niekiel F, Pavlichenko I, et al. Tandem MOF-based photonic crystals for enhanced analyte-specific optical detection. Chem Mater, 2015, 27: 1961–1970
Hu Z, Tao C, Liu H, et al. Fabrication of an NH2-MIL-88B photonic film for naked-eye sensing of organic vapors. J Mater Chem A, 2014, 2: 14222–14227
Hu Z, Tao C, Wang F, et al. Flexible metal–organic frameworkbased one-dimensional photonic crystals. J Mater Chem C, 2015, 3: 211–216
Yin W, Tao CA, Zou X, et al. The tuning of optical properties of nanoscale MOFs-based thin film through post-modification. Nanomaterials, 2017, 7: 242
Jiang D, Burrows AD, Edler KJ. Size-controlled synthesis of MIL-101(Cr) nanoparticles with enhanced selectivity for CO2 over N2. CrystEngComm, 2011, 13: 6916–6919
Jiang D, Keenan LL, Burrows AD, et al. Synthesis and post-synthetic modification of MIL-101(Cr)-NH2 via a tandem diazotisation process. Chem Commun, 2012, 48: 12053
Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309: 2040–2042
Modrow A, Zargarani D, Herges R, et al. Introducing a photoswitchable azo-functionality inside Cr-MIL-101-NH2 by covalent post-synthetic modification. Dalton Trans, 2012, 41: 8690–8696
Bernt S, Guillerm V, Serre C, et al. Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. Chem Commun, 2011, 47: 2838–2840
Jiang D, Burrows AD, Xiong Y, et al. Facile synthesis of crack-free metal–organic framework films on alumina by a dip-coating route in the presence of polyethylenimine. J Mater Chem A, 2013, 1: 5497–5500
Garnett JCM. Colours in metal glasses, in metallic films, and in metallic solutions. II. Philos Trans R Soc A-Math Phys Eng Sci, 1906, 205: 237–288
Bruggeman DAG. Dielectric constant and conductivity of mixtures of isotropic materials. Ann Phys, 1935, 24: 636–679
Schoedel A, Scherb C, Bein T. Oriented nanoscale films of metalorganic frameworks by room-temperature gel-layer synthesis. Angew Chem Int Ed, 2010, 49: 7225–7228
Stavila V, Schneider C, Mowry C, et al. Thin film growth of nbo MOFs and their integration with electroacoustic devices. Adv Funct Mater, 2016, 26: 1699–1707
Li X, Yu X, Han Y. Polymer thin films for antireflection coatings. J Mater Chem C, 2013, 1: 2266–2285