Tuning of salt separation efficiency by flow rate control in microfluidic dynamic dialysis

Prameen C. Kalikavunkal1, Nicolas G. Green1, Maurits R.R. de Planque1
1Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK

Tóm tắt

Abstract Microliter-scale separation processes are important for biomedical research and point-of-care diagnostics with small-volume clinical samples. Analytical assays such as mass spectrometry and field effect sensing necessitate sample desalting, but too low a salt concentration can disrupt protein structures and biomolecular interactions. In this work, we investigated whether salt extraction from a protein solution can be controlled by dynamic dialysis parameters. A microfluidic counter-flow dialyzer with a 5 kDa molecular weight cut-off cellulose membrane was fabricated by laser cutting and operated with a wide range of feed and dialysis flow rates. It was found that with the appropriate flow conditions, most notably the feed flow rate, retentate salt concentrations from 0.1 to 99% of the input NaCl concentration can be achieved. The experimental data were in good agreement with a theoretical diffusion-based mass transfer model. The salt dialysis performance was similar in the presence of 50 mg/mL albumin, approximating blood plasma protein content, and did not deteriorate with overnight continuous dialysis, indicating minimal membrane fouling. The dialyzer construction method is compatible with all planar membranes, enabling implementation of tuneable dynamic dialysis for a wide range of on-line microfluidic biomolecular separations.

Từ khóa


Tài liệu tham khảo

Bakeri G, Naeimifard S, Matsuura T, Ismail AF (2015) A porous polyethersulfone hollow fiber membrane in a gas humidification process. RSC Adv 5:14448–14457. https://doi.org/10.1039/C4RA14180F

Canarelli S, Fisch I, Freitag R (2002) On-line microdialysis of proteins with high-salt buffers for direct coupling of electrospray ionization mass spectrometry and liquid chromatography. J Chromatogr A 948:139–149. https://doi.org/10.1016/S0021-9673(01)01344-9

Casey C, Gallos T, Alekseev Y, Ayturk E, Pearl S (2011) Protein concentration with single-pass tangential flow filtration (SPTFF). J Membr Sci 384:82–88. https://doi.org/10.1016/j.memsci.2011.09.004

Chen X, Shen J, Hu Z, Huo X (2016) Manufacturing methods and applications of membranes in microfluidics. Biomed Microdevices 18:104. https://doi.org/10.1007/s10544-016-0130-7

Cuperus FP, Smolders CA (1991) Characterization of UF membranes: membrane characteristics and characterization techniques. Adv Colloid Interface Sci 34:135–173. https://doi.org/10.1016/0001-8686(91)80049-P

de Jong J, Lammertink RGH, Wessling M (2006) Membranes and microfluidics: a review. Lab Chip 6:1125–1139. https://doi.org/10.1039/b603275c

DesOrmeaux JPS, Winans JD, Wayson SE, Gaborski TR, Khire TS, Striemer CC, McGrath JL (2014) Nanoporous silicon nitride membranes fabricated from porous nanocrystalline silicon templates. Nanoscale 6:10798–10805. https://doi.org/10.1039/C4NR03070B

Garg R, Kumar V, Kumar D, Chakarvarti SK (2012) Electrical transport through micro porous track etch membranes of same porosity. Mod Phys Lett B 26:1250209. https://doi.org/10.1142/S0217984912502090

Garg R, Kumar V, Kumar D, Chakarvarti SK (2014) Electrical conduction studies through micro porous track etch membranes of equal pore density and porosity. ISST J Appl Phys 5:101–105

Haase AS, Chapman SJ, Tsai PA, Lohse D, Lammertink RGH (2015) The Graetz-Nusselt problem extended to continuum flows with finite slip. J Fluid Mech 764:R3. https://doi.org/10.1017/jfm.2014.733

Han S, Hwang DK (2018) No more bonding, no more clamping, magnetically assisted membrane integration in microfluidic devices. Microfluid Nanofluid 22:107. https://doi.org/10.1007/s10404-018-2127-4

Jakubowski JA, Hatcher NG, Sweedler JV (2005) Online microdialysis-dynamic nanoelectrospray ionization-mass spectrometry for monitoring neuropeptide secretion. J Mass Spectrom 40:924–931. https://doi.org/10.1002/jms.869

Kaisti M (2017) Detection principles of biological and chemical FET sensors. Biosens Bioelectron 98:437–448. https://doi.org/10.1016/j.bios.2017.07.010

Kazemi AS, Kawka K, Latulippe DR (2016) Optimization of biomolecule separation by combining microscale filtration and design-of-experiment methods. Biotechnol Bioeng 113:2131–2139. https://doi.org/10.1002/bit.25975

Kirtland JD (2010) Interfacial mass transfer in microfluidic systems: existence and persistence of the modified Grætz behavior. Ph.D. thesis, Cornell University

Kokubo K, Sakai K (1998) Evaluation of dialysis membranes using a tortuous pore model. AIChE J 44:2607–2619. https://doi.org/10.1002/aic.690441204

Kornreich M, Heymann M, Fraden S, Beck R (2014) Cross polarization compatible dialysis chip. Lab Chip 14:3700–3704. https://doi.org/10.1039/c4lc00600c

Kumar S, Chakarvarti SK (2008) Measurement of average etched pore radius in ion track membranes through conductometric technique. Mod Phys Lett B 22:2993–2998. https://doi.org/10.1142/S0217984908017527

Kurita R, Yabumoto N, Niwa O (2006) Miniaturized one-chip electrochemical sensing device integrated with a dialysis membrane and double thin-layer flow channels for measuring blood samples. Biosens Bioelectron 21:1649–1653. https://doi.org/10.1016/j.bios.2005.07.016

Kwak R, Guan G, Peng WK, Han J (2013) Microscale electrodialysis: concentration profiling and vortex visualization. Desalination 308:138–146. https://doi.org/10.1016/j.desal.2012.07.017

Liu C, Verma SS (1999) Direct coupling of ionic high-performance liquid chromatography with electrospray ionization mass spectrometry utilizing a microdialysis junction interface. J Chromatogr A 835:93–104. https://doi.org/10.1016/S0021-9673(98)01069-3

Liu C, Hofstadler SA, Bresson JA, Udseth HR, Tsukuda T, Smith RD, Snyder AP (1998) On-line dual microdialysis with ESI-MS for direct analysis of complex biological samples and microorganism lysates. Anal Chem 70:1797–1801. https://doi.org/10.1021/ac971193k

Lowe BM, Sun K, Zeimpekis I, Skylaris C-K, Green NG (2017) Field-effect sensors—from pH sensing to biosensing: sensitivity enhancement using streptavidin-biotin as a model system. Analyst 142:4173–4200. https://doi.org/10.1039/c7an00455a

Mireles M, Gaborski TR (2017) Fabrication techniques enabling ultrathin nanostructured membranes for separations. Electrophoresis 38:2374–2388. https://doi.org/10.1002/elps.201700114

Noor MO, Krull UJ (2014) Silicon nanowires as field-effect transducers for biosensor development: a review. Anal Chim Acta 825:1–25. https://doi.org/10.1016/j.aca.2014.03.016

Perozziello G, Candeloro P, Gentile F et al (2015) A microfluidic dialysis device for complex biological mixture SERS analysis. Microelectron Eng 144:37–41. https://doi.org/10.1016/j.mee.2015.02.015

Robinson RA, Stokes RH (2002) Electrolyte solutions: second revised edition. Courier Corporation, Chelmsford

Roelofs SH, van den Berg A, Odijk M (2015) Microfluidic desalination techniques and their potential applications. Lab Chip 15:3428–3438. https://doi.org/10.1039/c5lc00481k

Romero V, Vázquez MI, Benavente J (2013) Study of ionic and diffusive transport through a regenerated cellulose nanoporous membrane. J Membr Sci 433:152–159. https://doi.org/10.1016/j.memsci.2013.01.012

Saxena A, Tripathi BP, Kumar M, Shahi VK (2009) Membrane-based techniques for the separation and purification of proteins: an overview. Adv Colloid Interface Sci 145:1–22. https://doi.org/10.1016/j.cis.2008.07.004

Sheng Y, Bowser MT (2012) Size selective DNA transport through a nanoporous membrane in a PDMS microfluidic device. Analyst 137:1144–1151. https://doi.org/10.1039/c2an15966j

Shi X, Tal G, Hankins NP, Gitis V (2014) Fouling and cleaning of ultrafiltration membranes: a review. J Water Process Eng 1:121–138. https://doi.org/10.1016/j.jwpe.2014.04.003

Sun L, Duan J, Tao D, Liang Z, Zhang W, Zhang L, Zhang Y (2008) A facile microdialysis interface for on-line desalting and identification of proteins by nano-electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 22:2391–2397. https://doi.org/10.1002/rcm.3622

Tibavinsky IA, Kottke PA, Fedorov AG (2015) Microfabricated ultrarapid desalting device for nanoelectrospray ionization mass spectrometry. Anal Chem 87:351–356. https://doi.org/10.1021/ac5040083

Timm AC, Shankles PG, Foster CM, Doktycz MJ, Retterer ST (2016) Toward microfluidic reactors for cell-free protein synthesis at the point-of-care. Small 12:810–817. https://doi.org/10.1002/smll.201502764

van Reis R, Zydney A (2007) Bioprocess membrane technology. J Membr Sci 297:16–50. https://doi.org/10.1016/j.memsci.2007.02.045

Wang Y-N, Tang CY (2011) Fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes by protein mixtures: the role of inter-foulant-species interaction. Environ Sci Technol 45:6373–6379. https://doi.org/10.1021/es2013177

Wang J, Zhu J, Zhang Y, Liu J, Van der Bruggen B (2017) Nanoscale tailor-made membranes for precise and rapid molecular sieve separation. Nanoscale 9:2942–2957. https://doi.org/10.1039/C6NR08417F

Wardrip NC, Arnusch CJ (2016) Three-dimensionally printed microfluidic cross-flow system for ultrafiltration/nanofiltration membrane performance testing. J Vis Exp 108:e53556.  https://doi.org/10.3791/53556

Wu W, Zhang D, Chen K, Zhou P, Zhao M, Qiao L, Su B (2018) Highly efficient desalting by silica isoporous membrane based microfluidic chip for electrospray ionization mass spectrometry. Anal Chem 90:14395–14401.  https://doi.org/10.1021/acs.analchem.8b03934

Xiang F, Lin Y, Wen J, Matson DW, Smith RD (1999) An integrated microfabricated device for dual microdialysis and on-line ESI-ion trap mass spectrometry for analysis of complex biological samples. Anal Chem 71:1485–1490. https://doi.org/10.1021/ac981400w

Xu N, Lin Y, Hofstadler SA, Matson D, Call CJ, Smith RD (1998) A microfabricated dialysis device for sample cleanup in electrospray ionization mass spectrometry. Anal Chem 70:3553–3556. https://doi.org/10.1021/ac980233x

Yeh H-M (2008) Application of internal reflux in the raffinate phase for membrane extraction in cross-flow rectangular modules. J Chin Inst Chem Eng 39:571–578. https://doi.org/10.1016/j.jcice.2008.05.010

Yeh HM, Chang YH (2005) Mass transfer for dialysis through parallel-flow double-pass rectangular membrane modules. J Membr Sci 260:1–9. https://doi.org/10.1016/j.memsci.2005.03.003

Yeh H-M, Hsu Y-S (1999) Analysis of membrane extraction through rectangular mass exchangers. Chem Eng Sci 54:897–908. https://doi.org/10.1016/S0009-2509(98)00272-3

Zhou H-X, Pang X (2018) Electrostatic interactions in protein structure, folding, binding, and condensation. Chem Rev 118:1691–1741. https://doi.org/10.1021/acs.chemrev.7b00305