Tinh chỉnh tính chất ferroelectric của các hỗn hợp polyme cho các ứng dụng lưu trữ năng lượng điện linh hoạt

Science China Materials - Tập 64 - Trang 1642-1652 - 2021
Xin Zhang1,2, Yanda Jiang1, Ruoqi Gao1, Xinhui Li1, Zhonghui Shen1, Bao-Wen Li1, Qingfeng Zhang3, Shujun Zhang4, Ce-Wen Nan5
1State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, China
2International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
3Hubei Key Lab of Ferro & Piezoelectric Materials and Devices, School of Materials Science & Engineering, Hubei University, Wuhan, China
4Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, North Wollongong, Australia
5School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, China

Tóm tắt

Các polyme ferroelectric là nền tảng cho các thiết bị điện tử linh hoạt tiên tiến. Việc điều chỉnh các phim polyme ferroelectric cho nhiều ứng dụng khác nhau thông qua các phương pháp chế biến đơn giản là một thách thức. Ở đây, chúng tôi chứng minh rằng việc điều chỉnh phản ứng ferroelectric có thể đạt được trong các hỗn hợp polyme của poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) và polymethyl methacrylate (PMMA) được chuẩn bị thông qua một quy trình hai bước đơn giản. Quy trình hai bước được đề xuất đã mang lại cho các hỗn hợp polyme sự phân bố ngẫu nhiên của pha tinh thể P(VDF-TrFE), do đó tách rời các tương tác miền ferroelectric đồng nhất giữa các pha tinh thể có trật tự liên tục mà thường tồn tại trong các phim P(VDF-TrFE) thông thường. Việc bổ sung chuỗi PMMA không tinh thể có khả năng hòa tan với độ phân cực thấp dẫn đến sự đảo ngược của các dipole và sự chuyển tiếp từ hành vi ferroelectric sang hành vi tương tự như antiferroelectric, vượt qua sự đánh đổi giữa trường phân cực và trường khử polar. Đặc biệt, các tính chất cơ học và điện tuyệt vời của các phim hỗn hợp polyme dẫn đến độ bền đứt gãy và hiệu suất lưu trữ năng lượng được cải thiện đáng kể, vượt qua P(VDF-TrFE) và các phim polypropylene định hướng hai trục thương mại. Công trình này cung cấp một chiến lược đơn giản và hiệu quả để điều chỉnh phản ứng ferroelectric của các vật liệu polyme với tiềm năng lớn cho các ứng dụng lưu trữ năng lượng điện linh hoạt.

Từ khóa

#polyme ferroelectric #P(VDF-TrFE) #PMMA #kiểm soát hàm lượng #lưu trữ năng lượng điện linh hoạt

Tài liệu tham khảo

Liu Y, Aziguli H, Zhang B, et al. Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature, 2018, 562: 96–100 Chu B, Zhou X, Ren K, et al. A dielectric polymer with high electric energy density and fast discharge speed. Science, 2006, 313: 334–336 Kim P, Doss NM, Tillotson JP, et al. High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano, 2009, 3: 2581–2592 Prateek, Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects. Chem Rev, 2016, 116: 4260–4317 Lovinger AJ. Ferroelectric polymers. Science, 1983, 220: 1115–1121 Martins P, Lopes AC, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog Polym Sci, 2014, 39: 683–706 Meng N, Ren X, Santagiuliana G, et al. Ultrahigh β-phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nat Commun, 2019, 10: 4535 Terzic I, Meereboer NL, Acuautla M, et al. Electroactive materials with tunable response based on block copolymer self-assembly. Nat Commun, 2019, 10: 1 Zhang G, Li Q, Gu H, et al. Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration. Adv Mater, 2015, 27: 1450–1454 Li Q, Zhang G, Zhang X, et al. Relaxor ferroelectric-based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy. Adv Mater, 2015, 27: 2236–2241 Zhang G, Zhang X, Yang T, et al. Colossal room-temperature electrocaloric effect in ferroelectric polymer nanocomposites using nanostructured barium strontium titanates. ACS Nano, 2015, 9: 7164–7174 Chen Q, Shen Y, Zhang S, et al. Polymer-based dielectrics with high energy storage density. Annu Rev Mater Res, 2015, 45: 433–458 Li Q, Chen L, Gadinski MR, et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature, 2015, 523: 576–579 Yang L, Li X, Allahyarov E, et al. Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect. Polymer, 2013, 54: 1709–1728 Cheng ZY, Zhang QM, Bateman FB. Dielectric relaxation behavior and its relation to microstructure in relaxor ferroelectric polymers: High-energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) copolymers. J Appl Phys, 2002, 92: 6749–6755 Forsythe JS, Hill DJT. The radiation chemistry of fluoropolymers. Prog Polym Sci, 2000, 25: 101–136 Chu B, Xin Zhou, Neese, et al. Relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer for high energy density storage capacitors. IEEE Trans Dielect Electr Insul, 2006, 13: 1162–1169 Xu H, Cheng ZY, Olson D, et al. Ferroelectric and electromechanical properties of poly(vinylidene-fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer. Appl Phys Lett, 2001, 78: 2360–2362 Guan F, Wang J, Yang L, et al. Confinement-induced high-field antiferroelectric-like behavior in a poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymer. Macromolecules, 2011, 44: 2190–2199 Li J, Tan S, Ding S, et al. High-field antiferroelectric behaviour and minimized energy loss in poly(vinylidene-co-trifluoroethylene)-graft-poly(ethyl methacrylate) for energy storage application. J Mater Chem, 2012, 22: 23468–23476 Guan F, Yang L, Wang J, et al. Confined ferroelectric properties in poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymers for electric energy storage applications. Adv Funct Mater, 2011, 21: 3176–3188 Khan MA, Bhansali US, Almadhoun MN, et al. High-performance ferroelectric memory based on phase-separated films of polymer blends. Adv Funct Mater, 2013, 24: 1372–1381 Gao L, He J, Hu J, et al. Tailored ferroelectric responses and enhanced energy density in PVDF-based homopolymer/terpolymer blends. J Appl Polym Sci, 2014, 131: 40994 Chen XZ, Li X, Qian XS, et al. A polymer blend approach to tailor the ferroelectric responses in P(VDF-TrFE) based copolymers. Polymer, 2013, 54: 2373–2381 Zhang X, Shen Y, Shen Z, et al. Achieving high energy density in PVDF-based polymer blends: Suppression of early polarization saturation and enhancement of breakdown strength. ACS Appl Mater Interfaces, 2016, 8: 27236–27242 Liu F, Li Z, Wang Q, et al. High breakdown strength and low loss binary polymer blends of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) and poly(methyl methacrylate). Polym Adv Technol, 2018, 29: 1271–1277 Kim EJ, Kim KA, Yoon SM. Investigation of the ferroelectric switching behavior of P(VDF-TrFE)-PMMA blended films for synaptic device applications. J Phys D-Appl Phys, 2016, 49: 075105 Bae I, Kang SJ, Park YJ, et al. Organic ferroelectric field-effect transistor with P(VDF-TrFE)/PMMA blend thin films for nonvolatile memory applications. Curr Appl Phys, 2015, 10: e54–e57 Aid S, Eddhahak A, Khelladi S, et al. On the miscibility of PVDF/PMMA polymer blends: Thermodynamics, experimental and numerical investigations. Polym Testing, 2019, 73: 222–231 Tanaka H, Nishi T. New types of phase separation behavior during the crystallization process in polymer blends with phase diagram. Phys Rev Lett, 1985, 55: 1102–1105 Okada T, Saito H, Inoue T. Nonlinear crystal growth in the mixture of isotactic polypropylene and liquid paraffin. Macromolecules, 1990, 23: 3865–3868 Okabe Y, Murakami H, Osaka N, et al. Morphology development and exclusion of noncrystalline polymer during crystallization in PVDF/PMMA blends. Polymer, 2010, 51: 1494–1500 Li J, Li F, Zhang SJ. Decoding the fingerprint of ferroelectric loops: Comprehension of the material properties and structures. J Am Ceram Soc, 2014, 97: 1–27 Zhu L, Wang Q. Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules, 2012, 45: 2937–2954 Stephanovich VA, Luk’yanchuk IA, Karkut MG. Domain-enhanced interlayer coupling in ferroelectric/paraelectric superlattices. Phys Rev Lett, 2005, 94: 047601 Zhang X, Shen Y, Zhang Q, et al. Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv Mater, 2015, 27: 819–824 Li Q, Zhang G, Liu F, et al. Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy Environ Sci, 2015, 8: 922–931 Zhou X, Zhao X, Suo Z, et al. Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer. Appl Phys Lett, 2009, 94: 162901 Ieda; Ieda M. Dielectric breakdown process of polymers. IEEE Trans Elect Insul, 1980, EI-15: 206–224 Zhu Y, Zhu Y, Huang X, et al. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv Energy Mater, 2019, 9: 1901826 Jiang Y, Zhang X, Shen Z, et al. Ultrahigh breakdown strength and improved energy density of polymer nanocomposites with gradient distribution of ceramic nanoparticles. Adv Funct Mater, 2019, 30: 1906112