Tuning charge density in tethered electrolyte active-layer membranes for enhanced ion-ion selectivity
Tài liệu tham khảo
Elimelech, 2011, The future of seawater desalination: energy, technology, and the environment, Science, 333, 712, 10.1126/science.1200488
Paul, 2004, Reformulation of the solution-diffusion theory of reverse osmosis, J. Membr. Sci., 241, 371, 10.1016/j.memsci.2004.05.026
Mehta, 2005, Permeability and selectivity analysis for ultrafiltration membranes, J. Membr. Sci., 249, 245, 10.1016/j.memsci.2004.09.040
Sujanani, 2020, Designing solute-tailored selectivity in membranes: perspectives for water reuse and resource recovery, ACS Macro Lett., 9, 1709, 10.1021/acsmacrolett.0c00710
Shannon, 2008, Science and technology for water purification in the coming decades, Nature, 452, 301, 10.1038/nature06599
Sholl, 2016, Seven chemical separations to change the world, Nat. News., 532, 435, 10.1038/532435a
Guest, 2009
Kumar, 2019, Lithium recovery from oil and gas produced water: a need for a growing energy industry, ACS Energy Lett., 4, 1471, 10.1021/acsenergylett.9b00779
Binnemans, 2013, Recovery of rare earths from industrial waste residues: a concise review
Ayora, 2016, Recovery of rare earth elements and yttrium from passive-remediation systems of acid mine drainage, Environ. Sci. Technol., 50, 8255, 10.1021/acs.est.6b02084
Werber, 2016, The critical need for increased selectivity, not increased water permeability, for desalination membranes, Environ. Sci. Technol. Lett., 3, 112, 10.1021/acs.estlett.6b00050
Chen, 2017, A facile method to quantify the carboxyl group areal density in the active layer of polyamide thin-film composite membranes, J. Membr. Sci., 534, 100, 10.1016/j.memsci.2017.04.001
Ritt, 2020, Ionization behavior of nanoporous polyamide membranes, Proc. Natl. Acad. Sci. USA, 117, 30191, 10.1073/pnas.2008421117
Nagarale, 2004, Preparation and electrochemical characterizations of cation-exchange membranes with different functional groups, Colloids Surf. A Physicochem. Eng. Asp., 251, 133, 10.1016/j.colsurfa.2004.09.028
Ji, 2020, Effects of fixed charge group physicochemistry on anion exchange membrane permselectivity and ion transport, Phys. Chem. Chem. Phys., 22, 7283, 10.1039/D0CP00018C
Warnock, 2021, Engineering Li/Na selectivity in 12-Crown-4–functionalized polymer membranes, Proc. Natl. Acad. Sci. USA, 118, 10.1073/pnas.2022197118
DuChanois, 2021, Membrane materials for selective ion separations at the water–energy nexus, Adv. Mater., 33, 10.1002/adma.202101312
Hua, 2003, Fabrication and characterization of metal oxide semiconductor capacitor based on layer-by-layer self-assembled thin films, Nanotechnology, 14, 453, 10.1088/0957-4484/14/4/309
Bruening, 2008, Creation of functional membranes using polyelectrolyte multilayers and polymer brushes, Langmuir, 24, 7663, 10.1021/la800179z
Bieker, 2010, Linear and exponential growth regimes of multilayers of weak polyelectrolytes in dependence on pH, Macromolecules, 43, 5052, 10.1021/ma1007489
Sheng, 2014, Facilitated ion transport through polyelectrolyte multilayer films containing metal-binding ligands, J. Membr. Sci., 459, 169, 10.1016/j.memsci.2014.01.051
Dizge, 2018, Biocatalytic and salt selective multilayer polyelectrolyte nanofiltration membrane, J. Membr. Sci., 549, 357, 10.1016/j.memsci.2017.12.026
Li, 2012, Effects of acidity on the size of polyaniline-poly(sodium 4-styrenesulfonate) composite particles and the stability of corresponding colloids in water, J. Colloid Interface Sci., 381, 11, 10.1016/j.jcis.2012.05.004
te Brinke, 2020, Asymmetric polyelectrolyte multilayer membranes with ultrathin separation layers for highly efficient micropollutant removal, Appl. Mater. Today, 18
Wang, 2021, Removal of emerging wastewater organic contaminants by polyelectrolyte multilayer nanofiltration membranes with tailored selectivity, ACS ES&T Eng., 1, 404, 10.1021/acsestengg.0c00160
Decher, 1991, Buildup of ultrathin multilayer films by a self-assembly process: II. Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces, Ber. Bunsen Ges. Phys. Chem., 95, 1430, 10.1002/bbpc.19910951122
Decher, 1992
Decher, 1997, Fuzzy nanoassemblies: toward layered polymeric multicomposites, Science, 277, 1232, 10.1126/science.277.5330.1232
Schönhoff, 2003, Layered polyelectrolyte complexes: physics of formation and molecular properties, J. Phys. Condens. Matter, 15, R1781, 10.1088/0953-8984/15/49/R01
Joseph, 2014, Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation, Polym. Chem., 5, 1817, 10.1039/C3PY01262J
DuChanois, 2022, Designing polymeric membranes with coordination chemistry for high-precision ion separations, Sci. Adv., 8, 10.1126/sciadv.abm9436
Cheng, 2018, Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: role of polyelectrolyte charge, ion size, and ionic strength, J. Membr. Sci., 559, 98, 10.1016/j.memsci.2018.04.052
Dubas, 2001, Polyelectrolyte multilayers containing a weak polyacid: construction and deconstruction, Macromolecules, 34, 3736, 10.1021/ma001720t
Ehrmann, 1993, Statistical n-butyl acrylate-sulfopropyl betaine copolymers. 3. Domain size determination by solid-state NMR spectroscopy, Macromolecules, 26, 988, 10.1021/ma00057a017
Wu, 2011, Influence of zwitterions on thermomechanical properties and morphology of acrylic copolymers: implications for electroactive applications, Macromolecules, 44, 8056, 10.1021/ma201211j
Bengani, 2015, Zwitterionic copolymer self-assembly for fouling resistant, high flux membranes with size-based small molecule selectivity, J. Membr. Sci., 493, 755, 10.1016/j.memsci.2015.07.025
Bengani-Lutz, 2017, Self-assembling zwitterionic copolymers as membrane selective layers with excellent fouling resistance: effect of zwitterion chemistry, ACS Appl. Mater. Interfaces, 9, 20859, 10.1021/acsami.7b04884
Lounder, 2021, Zwitterionic ion-selective membranes with tunable subnanometer pores and excellent fouling resistance, Chem. Mater., 33, 4408, 10.1021/acs.chemmater.1c00374
Bengani-Lutz, 2017, Extremely fouling resistant zwitterionic copolymer membranes with∼ 1 nm pore size for treating municipal, oily and textile wastewater streams, J. Membr. Sci., 543, 184, 10.1016/j.memsci.2017.08.058
Bengani-Lutz, 2019, High flux membranes with ultrathin zwitterionic copolymer selective layers with∼ 1 nm pores using an ionic liquid cosolvent, ACS App. Polym. Mater., 1, 1954, 10.1021/acsapm.9b00409
Cheng, 2009, Freestanding ultrathin nano-membranes via self-assembly, Nano Today, 4, 482, 10.1016/j.nantod.2009.10.005
Park, 2010, Desalination membranes from pH-controlled and thermally-crosslinked layer-by-layer assembled multilayers, J. Mater. Chem., 20, 2085, 10.1039/b918921a
Qiu, 2011, Synthesis of high flux forward osmosis membranes by chemically crosslinked layer-by-layer polyelectrolytes, J. Membr. Sci., 381, 74, 10.1016/j.memsci.2011.07.013
Saeki, 2013, Stabilization of layer-by-layer assembled nanofiltration membranes by crosslinking via amide bond formation and siloxane bond formation, J. Membr. Sci., 447, 128, 10.1016/j.memsci.2013.07.022
Toutianoush, 2005, Polyelectrolyte multilayer membranes for desalination of aqueous salt solutions and seawater under reverse osmosis conditions, Appl. Surf. Sci., 246, 437, 10.1016/j.apsusc.2004.11.068
Jin, 2003, Use of polyelectrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes, Langmuir, 19, 2550, 10.1021/la020926f
Robeson, 2008, The upper bound revisited, J. Membr. Sci., 320, 390, 10.1016/j.memsci.2008.04.030
Park, 2017, Maximizing the right stuff: the trade-off between membrane permeability and selectivity, Science, 356, 10.1126/science.aab0530
Porter, 2022, Tethered electrolyte active-layer membranes, J. Membr. Sci., 642, 10.1016/j.memsci.2021.120004
Bhut, 2008, Preparation of high-capacity, weak anion-exchange membranes for protein separations using surface-initiated atom transfer radical polymerization, J. Membr. Sci., 325, 176, 10.1016/j.memsci.2008.07.028
Zeng, 2021, Modification of electrospun regenerate cellulose nanofiber membrane via atom transfer radical polymerization (ATRP) approach as advanced carrier for laccase immobilization, Polymers, 13, 182, 10.3390/polym13020182
Himstedt, 2013, Responsive membranes for hydrophobic interaction chromatography, J. Membr. Sci., 447, 335, 10.1016/j.memsci.2013.07.020
Singh, 2008, Modification of regenerated cellulose ultrafiltration membranes by surface-initiated atom transfer radical polymerization, J. Membr. Sci., 311, 225, 10.1016/j.memsci.2007.12.036
Ziemann, 2020, Zwitterion polymer brushes on porous membranes: characterization, tribology, performance, and the effect of electrolyte anions, ACS App. Polym. Mater., 2, 4613, 10.1021/acsapm.0c00686
Matyjaszewski, 2001, Atom transfer radical polymerization, Chem. Rev., 101, 2921, 10.1021/cr940534g
Matyjaszewski, 2012, Atom transfer radical polymerization (ATRP): current status and future perspectives, Macromolecules, 45, 4015, 10.1021/ma3001719
Khabibullin, 2016, Surface-initiated atom transfer radical polymerization, 29
Zhou, 2012, Termination of surface radicals and kinetic modeling of ATRP grafting from flat surfaces by addition of deactivator, Macromolecules, 45, 1198, 10.1021/ma202640x
Erdogan, 2009, Well-defined block copolymer ionomers and their blend membranes for proton exchange membrane fuel cell, J. Membr. Sci., 344, 172, 10.1016/j.memsci.2009.07.048
Chen, 2011, Controlled insulin release from glucose-sensitive self-assembled multilayer films based on 21-arm star polymer, Biomaterials, 32, 1759, 10.1016/j.biomaterials.2010.11.002
Li, 2013, Self-assembled structures from PEGylated polypeptide block copolymers synthesized using a combination of ATRP, ROP, and click chemistry, Soft Matter, 9, 11257, 10.1039/c3sm52061g
Clodt, 2013, Double stimuli-responsive isoporous membranes via post-modification of pH-sensitive self-assembled diblock copolymer membranes, Adv. Funct. Mater., 23, 731, 10.1002/adfm.201202015
Ran, 2014, Atom transfer radical polymerization (ATRP): a versatile and forceful tool for functional membranes, Prog. Polym. Sci., 39, 124, 10.1016/j.progpolymsci.2013.09.001
Venault, 2014, Surface self-assembled zwitterionization of poly(vinylidene fluoride) microfiltration membranes via hydrophobic-driven coating for improved blood compatibility, J. Membr. Sci., 454, 253, 10.1016/j.memsci.2013.11.050
Alzahrani, 2019, Polymerization-induced self-assembly based on ATRP in supercritical carbon dioxide, Polym. Chem., 10, 2658, 10.1039/C9PY00498J
Mohammad, 2015, Nanofiltration membranes review: recent advances and future prospects, Desalination, 356, 226, 10.1016/j.desal.2014.10.043
Hilal, 2005, Nanofiltration of highly concentrated salt solutions up to seawater salinity, Desalination, 184, 315, 10.1016/j.desal.2005.02.062
Hernandez, 2017, Layer-by-layer assembled membranes with immobilized porins, RSC Adv., 7, 56123, 10.1039/C7RA08737C
Porter, 2020, Controlled grafting of polymer brush layers from porous cellulosic membranes, J. Membr. Sci., 596
Greene, 1999, vols. 65–67, 404
Ye, 2011, Synthesis of binary polymer brushes via two-step reverse atom transfer radical polymerization, Macromolecules, 44, 2253, 10.1021/ma1028533
Feng, 2005, Surface-initiated atom transfer radical polymerization of oligo(ethylene glycol) methacrylate: effect of solvent on graft density, Macromol. Rapid Commun., 26, 1383, 10.1002/marc.200500335
Chen, 2006, Surface-initiated atom transfer radical polymerization grafting of poly(2,2,2-trifluoroethyl methacrylate) from flat silicon wafer surfaces, J. Polym. Sci. Polym. Chem., 44, 1252, 10.1002/pola.21232
Tomlinson, 2006, Study of kinetics and macroinitiator efficiency in surface-initiated atom-transfer radical polymerization, Macromolecules, 39, 9049, 10.1021/ma061885n
Ell, 2009, Structural determination of high density, ATRP grown polystyrene brushes by neutron reflectivity, Macromolecules, 42, 9523, 10.1021/ma901239d
Biesheuvel, 2022, Tutorial review of reverse osmosis and electrodialysis, J. Membr. Sci., 647, 10.1016/j.memsci.2021.120221
Biesheuvel, 2020, Ion selectivity in brackish water desalination by reverse osmosis: theory, measurements, and implications, Environ. Sci. Technol. Lett., 7, 42, 10.1021/acs.estlett.9b00686
Fetters, 1994, Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties, Macromolecules, 27, 4639, 10.1021/ma00095a001
Hiemenz, 2007
Coluzza, 2008, Transition from highly to fully stretched polymer brushes in good solvent, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.016104
Dong, 2009, Dissociation behavior of weak polyelectrolyte brushes on a planar surface, Langmuir, 25, 4774, 10.1021/la8039384
Hirschl, 2013, Determining the degree of crosslinking of ethylene vinyl acetate photovoltaic module encapsulants—a comparative study, Sol. Energy Mater. Sol. Cell., 116, 203, 10.1016/j.solmat.2013.04.022
Tian, 2016, Construction of pH-responsive and up-conversion luminescent NaYF4:Yb3+/Er3+ @SiO2@PMAA nanocomposite for colon targeted drug delivery, Sci. Rep., 6
Chen, 2015, Preparation of pH-sensitive nanoparticles of poly (methacrylic acid) (PMAA)/poly (vinyl pyrrolidone) (PVP) by ATRP-template miniemulsion polymerization in the aqueous solution, Colloid Polym. Sci., 293, 2035, 10.1007/s00396-015-3554-3
Dickhaus, 2016, Determination of polyelectrolyte pKa values using surface-to-air tension measurements, Colloids Surf. A Physicochem. Eng. Asp., 488, 15, 10.1016/j.colsurfa.2015.10.015
PubChem Compound Summary for CID 12373, 1,6-Diiodohexane. National Center for Biotechnology Information.
Miller, 2005, Correlation of the swelling and permeability of polyelectrolyte multilayer films, Chem. Mater., 17, 5375, 10.1021/cm0512225
Shi, 2013, Composite polyelectrolyte multilayer membranes for oligosaccharides nanofiltration separation, Carbohydr. Polym., 94, 106, 10.1016/j.carbpol.2013.01.044
Lentsch, 1993, Separation albumin–PEG: transmission of PEG through ultrafiltration membranes, Biotechnol. Bioeng., 41, 1039, 10.1002/bit.260411106
Howe, 2002, Fouling of microfiltration and ultrafiltration membranes by natural waters, Environ. Sci. Technol., 36, 3571, 10.1021/es025587r
Nightingale, 1959, Phenomenological theory of ion solvation. Effective radii of hydrated ions, J. Phys. Chem., 63, 1381, 10.1021/j150579a011
Debye, 1923, De la theorie des electrolytes. I. abaissement du point de congelation et phenomenes associes, Phys. Z., 24, 185
Labban, 2017, Fundamentals of low-pressure nanofiltration: membrane characterization, modeling, and understanding the multi-ionic interactions in water softening, J. Membr. Sci., 521, 18, 10.1016/j.memsci.2016.08.062
Wang, 2021, Salt and water transport in reverse osmosis membranes: beyond the solution-diffusion model, Environ. Sci. Technol., 55, 16665, 10.1021/acs.est.1c05649
Wright, 2004, Generation of resting membrane potential, Adv. Physiol. Educ., 28, 139, 10.1152/advan.00029.2004
Galama, 2016, On the origin of the membrane potential arising across densely charged ion exchange membranes: how well does the Teorell-Meyer-Sievers theory work?, J. Membr. Sci. Res., 2, 128
Zhou, 2020, Intrapore energy barriers govern ion transport and selectivity of desalination membranes, Sci. Adv., 6, 10.1126/sciadv.abd9045
