Tuning charge density in tethered electrolyte active-layer membranes for enhanced ion-ion selectivity

Journal of Membrane Science - Tập 668 - Trang 121214 - 2023
Cassandra J. Porter1,2, Li Wang3, Mingjiang Zhong1,4, Menachem Elimelech3
1Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States
2Department of Chemical Engineering, Auburn University, Auburn, AL, 36849-5341, United States
3Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, United States
4Department of Chemistry, Yale University, New Haven, CT, 06520-8286, United States

Tài liệu tham khảo

Elimelech, 2011, The future of seawater desalination: energy, technology, and the environment, Science, 333, 712, 10.1126/science.1200488 Paul, 2004, Reformulation of the solution-diffusion theory of reverse osmosis, J. Membr. Sci., 241, 371, 10.1016/j.memsci.2004.05.026 Mehta, 2005, Permeability and selectivity analysis for ultrafiltration membranes, J. Membr. Sci., 249, 245, 10.1016/j.memsci.2004.09.040 Sujanani, 2020, Designing solute-tailored selectivity in membranes: perspectives for water reuse and resource recovery, ACS Macro Lett., 9, 1709, 10.1021/acsmacrolett.0c00710 Shannon, 2008, Science and technology for water purification in the coming decades, Nature, 452, 301, 10.1038/nature06599 Sholl, 2016, Seven chemical separations to change the world, Nat. News., 532, 435, 10.1038/532435a Guest, 2009 Kumar, 2019, Lithium recovery from oil and gas produced water: a need for a growing energy industry, ACS Energy Lett., 4, 1471, 10.1021/acsenergylett.9b00779 Binnemans, 2013, Recovery of rare earths from industrial waste residues: a concise review Ayora, 2016, Recovery of rare earth elements and yttrium from passive-remediation systems of acid mine drainage, Environ. Sci. Technol., 50, 8255, 10.1021/acs.est.6b02084 Werber, 2016, The critical need for increased selectivity, not increased water permeability, for desalination membranes, Environ. Sci. Technol. Lett., 3, 112, 10.1021/acs.estlett.6b00050 Chen, 2017, A facile method to quantify the carboxyl group areal density in the active layer of polyamide thin-film composite membranes, J. Membr. Sci., 534, 100, 10.1016/j.memsci.2017.04.001 Ritt, 2020, Ionization behavior of nanoporous polyamide membranes, Proc. Natl. Acad. Sci. USA, 117, 30191, 10.1073/pnas.2008421117 Nagarale, 2004, Preparation and electrochemical characterizations of cation-exchange membranes with different functional groups, Colloids Surf. A Physicochem. Eng. Asp., 251, 133, 10.1016/j.colsurfa.2004.09.028 Ji, 2020, Effects of fixed charge group physicochemistry on anion exchange membrane permselectivity and ion transport, Phys. Chem. Chem. Phys., 22, 7283, 10.1039/D0CP00018C Warnock, 2021, Engineering Li/Na selectivity in 12-Crown-4–functionalized polymer membranes, Proc. Natl. Acad. Sci. USA, 118, 10.1073/pnas.2022197118 DuChanois, 2021, Membrane materials for selective ion separations at the water–energy nexus, Adv. Mater., 33, 10.1002/adma.202101312 Hua, 2003, Fabrication and characterization of metal oxide semiconductor capacitor based on layer-by-layer self-assembled thin films, Nanotechnology, 14, 453, 10.1088/0957-4484/14/4/309 Bruening, 2008, Creation of functional membranes using polyelectrolyte multilayers and polymer brushes, Langmuir, 24, 7663, 10.1021/la800179z Bieker, 2010, Linear and exponential growth regimes of multilayers of weak polyelectrolytes in dependence on pH, Macromolecules, 43, 5052, 10.1021/ma1007489 Sheng, 2014, Facilitated ion transport through polyelectrolyte multilayer films containing metal-binding ligands, J. Membr. Sci., 459, 169, 10.1016/j.memsci.2014.01.051 Dizge, 2018, Biocatalytic and salt selective multilayer polyelectrolyte nanofiltration membrane, J. Membr. Sci., 549, 357, 10.1016/j.memsci.2017.12.026 Li, 2012, Effects of acidity on the size of polyaniline-poly(sodium 4-styrenesulfonate) composite particles and the stability of corresponding colloids in water, J. Colloid Interface Sci., 381, 11, 10.1016/j.jcis.2012.05.004 te Brinke, 2020, Asymmetric polyelectrolyte multilayer membranes with ultrathin separation layers for highly efficient micropollutant removal, Appl. Mater. Today, 18 Wang, 2021, Removal of emerging wastewater organic contaminants by polyelectrolyte multilayer nanofiltration membranes with tailored selectivity, ACS ES&T Eng., 1, 404, 10.1021/acsestengg.0c00160 Decher, 1991, Buildup of ultrathin multilayer films by a self-assembly process: II. Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces, Ber. Bunsen Ges. Phys. Chem., 95, 1430, 10.1002/bbpc.19910951122 Decher, 1992 Decher, 1997, Fuzzy nanoassemblies: toward layered polymeric multicomposites, Science, 277, 1232, 10.1126/science.277.5330.1232 Schönhoff, 2003, Layered polyelectrolyte complexes: physics of formation and molecular properties, J. Phys. Condens. Matter, 15, R1781, 10.1088/0953-8984/15/49/R01 Joseph, 2014, Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation, Polym. Chem., 5, 1817, 10.1039/C3PY01262J DuChanois, 2022, Designing polymeric membranes with coordination chemistry for high-precision ion separations, Sci. Adv., 8, 10.1126/sciadv.abm9436 Cheng, 2018, Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: role of polyelectrolyte charge, ion size, and ionic strength, J. Membr. Sci., 559, 98, 10.1016/j.memsci.2018.04.052 Dubas, 2001, Polyelectrolyte multilayers containing a weak polyacid: construction and deconstruction, Macromolecules, 34, 3736, 10.1021/ma001720t Ehrmann, 1993, Statistical n-butyl acrylate-sulfopropyl betaine copolymers. 3. Domain size determination by solid-state NMR spectroscopy, Macromolecules, 26, 988, 10.1021/ma00057a017 Wu, 2011, Influence of zwitterions on thermomechanical properties and morphology of acrylic copolymers: implications for electroactive applications, Macromolecules, 44, 8056, 10.1021/ma201211j Bengani, 2015, Zwitterionic copolymer self-assembly for fouling resistant, high flux membranes with size-based small molecule selectivity, J. Membr. Sci., 493, 755, 10.1016/j.memsci.2015.07.025 Bengani-Lutz, 2017, Self-assembling zwitterionic copolymers as membrane selective layers with excellent fouling resistance: effect of zwitterion chemistry, ACS Appl. Mater. Interfaces, 9, 20859, 10.1021/acsami.7b04884 Lounder, 2021, Zwitterionic ion-selective membranes with tunable subnanometer pores and excellent fouling resistance, Chem. Mater., 33, 4408, 10.1021/acs.chemmater.1c00374 Bengani-Lutz, 2017, Extremely fouling resistant zwitterionic copolymer membranes with∼ 1 nm pore size for treating municipal, oily and textile wastewater streams, J. Membr. Sci., 543, 184, 10.1016/j.memsci.2017.08.058 Bengani-Lutz, 2019, High flux membranes with ultrathin zwitterionic copolymer selective layers with∼ 1 nm pores using an ionic liquid cosolvent, ACS App. Polym. Mater., 1, 1954, 10.1021/acsapm.9b00409 Cheng, 2009, Freestanding ultrathin nano-membranes via self-assembly, Nano Today, 4, 482, 10.1016/j.nantod.2009.10.005 Park, 2010, Desalination membranes from pH-controlled and thermally-crosslinked layer-by-layer assembled multilayers, J. Mater. Chem., 20, 2085, 10.1039/b918921a Qiu, 2011, Synthesis of high flux forward osmosis membranes by chemically crosslinked layer-by-layer polyelectrolytes, J. Membr. Sci., 381, 74, 10.1016/j.memsci.2011.07.013 Saeki, 2013, Stabilization of layer-by-layer assembled nanofiltration membranes by crosslinking via amide bond formation and siloxane bond formation, J. Membr. Sci., 447, 128, 10.1016/j.memsci.2013.07.022 Toutianoush, 2005, Polyelectrolyte multilayer membranes for desalination of aqueous salt solutions and seawater under reverse osmosis conditions, Appl. Surf. Sci., 246, 437, 10.1016/j.apsusc.2004.11.068 Jin, 2003, Use of polyelectrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes, Langmuir, 19, 2550, 10.1021/la020926f Robeson, 2008, The upper bound revisited, J. Membr. Sci., 320, 390, 10.1016/j.memsci.2008.04.030 Park, 2017, Maximizing the right stuff: the trade-off between membrane permeability and selectivity, Science, 356, 10.1126/science.aab0530 Porter, 2022, Tethered electrolyte active-layer membranes, J. Membr. Sci., 642, 10.1016/j.memsci.2021.120004 Bhut, 2008, Preparation of high-capacity, weak anion-exchange membranes for protein separations using surface-initiated atom transfer radical polymerization, J. Membr. Sci., 325, 176, 10.1016/j.memsci.2008.07.028 Zeng, 2021, Modification of electrospun regenerate cellulose nanofiber membrane via atom transfer radical polymerization (ATRP) approach as advanced carrier for laccase immobilization, Polymers, 13, 182, 10.3390/polym13020182 Himstedt, 2013, Responsive membranes for hydrophobic interaction chromatography, J. Membr. Sci., 447, 335, 10.1016/j.memsci.2013.07.020 Singh, 2008, Modification of regenerated cellulose ultrafiltration membranes by surface-initiated atom transfer radical polymerization, J. Membr. Sci., 311, 225, 10.1016/j.memsci.2007.12.036 Ziemann, 2020, Zwitterion polymer brushes on porous membranes: characterization, tribology, performance, and the effect of electrolyte anions, ACS App. Polym. Mater., 2, 4613, 10.1021/acsapm.0c00686 Matyjaszewski, 2001, Atom transfer radical polymerization, Chem. Rev., 101, 2921, 10.1021/cr940534g Matyjaszewski, 2012, Atom transfer radical polymerization (ATRP): current status and future perspectives, Macromolecules, 45, 4015, 10.1021/ma3001719 Khabibullin, 2016, Surface-initiated atom transfer radical polymerization, 29 Zhou, 2012, Termination of surface radicals and kinetic modeling of ATRP grafting from flat surfaces by addition of deactivator, Macromolecules, 45, 1198, 10.1021/ma202640x Erdogan, 2009, Well-defined block copolymer ionomers and their blend membranes for proton exchange membrane fuel cell, J. Membr. Sci., 344, 172, 10.1016/j.memsci.2009.07.048 Chen, 2011, Controlled insulin release from glucose-sensitive self-assembled multilayer films based on 21-arm star polymer, Biomaterials, 32, 1759, 10.1016/j.biomaterials.2010.11.002 Li, 2013, Self-assembled structures from PEGylated polypeptide block copolymers synthesized using a combination of ATRP, ROP, and click chemistry, Soft Matter, 9, 11257, 10.1039/c3sm52061g Clodt, 2013, Double stimuli-responsive isoporous membranes via post-modification of pH-sensitive self-assembled diblock copolymer membranes, Adv. Funct. Mater., 23, 731, 10.1002/adfm.201202015 Ran, 2014, Atom transfer radical polymerization (ATRP): a versatile and forceful tool for functional membranes, Prog. Polym. Sci., 39, 124, 10.1016/j.progpolymsci.2013.09.001 Venault, 2014, Surface self-assembled zwitterionization of poly(vinylidene fluoride) microfiltration membranes via hydrophobic-driven coating for improved blood compatibility, J. Membr. Sci., 454, 253, 10.1016/j.memsci.2013.11.050 Alzahrani, 2019, Polymerization-induced self-assembly based on ATRP in supercritical carbon dioxide, Polym. Chem., 10, 2658, 10.1039/C9PY00498J Mohammad, 2015, Nanofiltration membranes review: recent advances and future prospects, Desalination, 356, 226, 10.1016/j.desal.2014.10.043 Hilal, 2005, Nanofiltration of highly concentrated salt solutions up to seawater salinity, Desalination, 184, 315, 10.1016/j.desal.2005.02.062 Hernandez, 2017, Layer-by-layer assembled membranes with immobilized porins, RSC Adv., 7, 56123, 10.1039/C7RA08737C Porter, 2020, Controlled grafting of polymer brush layers from porous cellulosic membranes, J. Membr. Sci., 596 Greene, 1999, vols. 65–67, 404 Ye, 2011, Synthesis of binary polymer brushes via two-step reverse atom transfer radical polymerization, Macromolecules, 44, 2253, 10.1021/ma1028533 Feng, 2005, Surface-initiated atom transfer radical polymerization of oligo(ethylene glycol) methacrylate: effect of solvent on graft density, Macromol. Rapid Commun., 26, 1383, 10.1002/marc.200500335 Chen, 2006, Surface-initiated atom transfer radical polymerization grafting of poly(2,2,2-trifluoroethyl methacrylate) from flat silicon wafer surfaces, J. Polym. Sci. Polym. Chem., 44, 1252, 10.1002/pola.21232 Tomlinson, 2006, Study of kinetics and macroinitiator efficiency in surface-initiated atom-transfer radical polymerization, Macromolecules, 39, 9049, 10.1021/ma061885n Ell, 2009, Structural determination of high density, ATRP grown polystyrene brushes by neutron reflectivity, Macromolecules, 42, 9523, 10.1021/ma901239d Biesheuvel, 2022, Tutorial review of reverse osmosis and electrodialysis, J. Membr. Sci., 647, 10.1016/j.memsci.2021.120221 Biesheuvel, 2020, Ion selectivity in brackish water desalination by reverse osmosis: theory, measurements, and implications, Environ. Sci. Technol. Lett., 7, 42, 10.1021/acs.estlett.9b00686 Fetters, 1994, Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties, Macromolecules, 27, 4639, 10.1021/ma00095a001 Hiemenz, 2007 Coluzza, 2008, Transition from highly to fully stretched polymer brushes in good solvent, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.016104 Dong, 2009, Dissociation behavior of weak polyelectrolyte brushes on a planar surface, Langmuir, 25, 4774, 10.1021/la8039384 Hirschl, 2013, Determining the degree of crosslinking of ethylene vinyl acetate photovoltaic module encapsulants—a comparative study, Sol. Energy Mater. Sol. Cell., 116, 203, 10.1016/j.solmat.2013.04.022 Tian, 2016, Construction of pH-responsive and up-conversion luminescent NaYF4:Yb3+/Er3+ @SiO2@PMAA nanocomposite for colon targeted drug delivery, Sci. Rep., 6 Chen, 2015, Preparation of pH-sensitive nanoparticles of poly (methacrylic acid) (PMAA)/poly (vinyl pyrrolidone) (PVP) by ATRP-template miniemulsion polymerization in the aqueous solution, Colloid Polym. Sci., 293, 2035, 10.1007/s00396-015-3554-3 Dickhaus, 2016, Determination of polyelectrolyte pKa values using surface-to-air tension measurements, Colloids Surf. A Physicochem. Eng. Asp., 488, 15, 10.1016/j.colsurfa.2015.10.015 PubChem Compound Summary for CID 12373, 1,6-Diiodohexane. National Center for Biotechnology Information. Miller, 2005, Correlation of the swelling and permeability of polyelectrolyte multilayer films, Chem. Mater., 17, 5375, 10.1021/cm0512225 Shi, 2013, Composite polyelectrolyte multilayer membranes for oligosaccharides nanofiltration separation, Carbohydr. Polym., 94, 106, 10.1016/j.carbpol.2013.01.044 Lentsch, 1993, Separation albumin–PEG: transmission of PEG through ultrafiltration membranes, Biotechnol. Bioeng., 41, 1039, 10.1002/bit.260411106 Howe, 2002, Fouling of microfiltration and ultrafiltration membranes by natural waters, Environ. Sci. Technol., 36, 3571, 10.1021/es025587r Nightingale, 1959, Phenomenological theory of ion solvation. Effective radii of hydrated ions, J. Phys. Chem., 63, 1381, 10.1021/j150579a011 Debye, 1923, De la theorie des electrolytes. I. abaissement du point de congelation et phenomenes associes, Phys. Z., 24, 185 Labban, 2017, Fundamentals of low-pressure nanofiltration: membrane characterization, modeling, and understanding the multi-ionic interactions in water softening, J. Membr. Sci., 521, 18, 10.1016/j.memsci.2016.08.062 Wang, 2021, Salt and water transport in reverse osmosis membranes: beyond the solution-diffusion model, Environ. Sci. Technol., 55, 16665, 10.1021/acs.est.1c05649 Wright, 2004, Generation of resting membrane potential, Adv. Physiol. Educ., 28, 139, 10.1152/advan.00029.2004 Galama, 2016, On the origin of the membrane potential arising across densely charged ion exchange membranes: how well does the Teorell-Meyer-Sievers theory work?, J. Membr. Sci. Res., 2, 128 Zhou, 2020, Intrapore energy barriers govern ion transport and selectivity of desalination membranes, Sci. Adv., 6, 10.1126/sciadv.abd9045