Các đặc tính có thể điều chỉnh của điểm lượng tử carbon qua các phương pháp tổng hợp khác nhau

Journal of Nanostructure in Chemistry - Tập 12 - Trang 565-580 - 2021
A. R. Nallayagari1, E. Sgreccia1, R. Pizzoferrato1, M. Cabibbo2, S. Kaciulis3, E. Bolli3, L. Pasquini4, P. Knauth4, M. L. Di Vona1
1Department of Industrial Engineering and International Laboratory: Ionomer Materials for Energy, University of Rome Tor Vergata, Roma, Italy
2Department of Industrial Engineering and Mathematical Sciences (DIISM), Università Politecnica delle Marche, Ancona, Italy
3Institute for the Study of Nanostructured Materials, ISMN-CNR, Monterotondo Stazione, Roma, Italy
4Aix Marseille Univ, CNRS, MADIREL (UMR 7246) and International Laboratory: Ionomer Materials for Energy, Marseille, France

Tóm tắt

Điểm lượng tử carbon (CQD) được chế tạo từ ba tiền chất khác nhau và bằng ba phương pháp tổng hợp từ dưới lên: quá trình pirol hóa axit citric (CAP), bức xạ vi sóng glucose (GM), và điều trị thủy nhiệt glucosamine hydrochloride (GAH). CQD được chuyển hóa thêm bằng cách sử dụng các hợp chất chứa nitơ khác nhau: axit 6-aminohexanoic, 1,6-diaminohexane, N-octylamine, dimethylamine và tryptophan. Sự chú ý đặc biệt được dành cho việc điều tra cách kết hợp giữa phương pháp tổng hợp và vật liệu khởi đầu ảnh hưởng đến bản chất và các thuộc tính của CQD. Phân tích cho thấy rằng CAP là ứng viên tốt cho việc chức năng hóa cộng hóa trị sau, GM cho phép dễ dàng passivation, và GAH cho phép đưa nitrogen trực tiếp vào lõi. Phân bố kích thước cho thấy cấu trúc lõi-b shell cho CQD được chức năng hóa bằng một aminoacid qua bức xạ vi sóng, trong khi phân hủy nhiệt chứng tỏ sự phân hủy của các phân tử chức năng hóa và sự hiện diện của nitơ pyridinic và pyrrolic sau tổng hợp thủy nhiệt. Quang phổ phát quang cho thấy sự khác biệt quan trọng giữa các kỹ thuật tổng hợp, liên quan đến sự tồn tại của các trạng thái bề mặt, và năng suất lượng tử phát quang cao nhất cho CQD được chuẩn bị bằng phương pháp thủy nhiệt. Những phương pháp này dẫn đến CQD với các thuộc tính có thể được khai thác trong nhiều lĩnh vực từ chuyển đổi năng lượng đến cảm biến.

Từ khóa

#Điểm lượng tử carbon #phương pháp tổng hợp #pirol hóa #bức xạ vi sóng #điều trị thủy nhiệt #chức năng hóa nitrogen #quang phổ phát quang.

Tài liệu tham khảo

Dong, Y., Chen, C., Zheng, X., Gao, L., Cui, Z., Yang, H., Guo, C., Chi, Y., Li, C.M.: One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J. Mater. Chem. 22, 8764–8766 (2012) Li, L., Wu, G., Yang, G., Peng, J., Zhao, J., Zhu, J.-J.: Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5, 4015–4039 (2013) Naik, J.P., Sutradhar, P., Saha, M.: Molecular scale rapid synthesis of graphene quantum dots (GQDs). J. Nanostruct. Chem. 7, 85–89 (2017) Wu, Z., Li, W., Chen, J., Yu, C.: A graphene quantum dot-based method for the highly sensitive and selective fluorescence turn on detection of biothiols. Talanta 119, 538–543 (2014) Jin, S.H., Kim, D.H., Jun, G.H., Hong, S.H., Jeon, S.: Tuning the Photoluminescence of Graphene Quantum Dots through the Charge Transfer Effect of Functional Groups. ACS Nano 7, 1239–1245 (2013) Qu, D., Zheng, M., Zhang, L., Zhao, H., Xie, Z., Jing, X., Haddad, R.E., Fan, H., Sun, Z.: Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 4, 5294 (2014) Pillar-Little, T., Kim, D.Y.: Differentiating the impact of nitrogen chemical states on optical properties of nitrogen-doped graphene quantum dots. RSC Adv. 7, 48263–48267 (2017) Ding, W., Wei, Z., Chen, S., Qi, X., Yang, T., Hu, J., Wang, D., Wan, L.-J., Alvi, S.F., Li, L.: Space-Confinement-Induced Synthesis of Pyridinic- and Pyrrolic-Nitrogen-Doped Graphene for the Catalysis of Oxygen Reduction. Angew. Chem. Int. Ed. 52, 11755–11759 (2013) Zhu, S., Song, Y., Zhao, X., Shao, J., Zhang, J., Yang, B.: The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 8, 355–381 (2015) Achadu, O.J., Nyokong, T.: Interaction of Graphene Quantum Dots with 4-Acetamido-2,2,6,6-Tetramethylpiperidine-Oxyl Free Radicals: A Spectroscopic and Fluorimetric Study. J. Fluoresc. 26, 283–295 (2016) Tetsuka, H., Asahi, R., Nagoya, A., Okamoto, K., Tajima, I., Ohta, R., Okamoto, A.: Optically Tunable Amino-Functionalized Graphene Quantum Dots. Adv. Mater. 24, 5333–5338 (2012) Huang, D., Zhou, H., Wu, Y., Wang, T., Sun, L., Gao, P., Sun, Y., Huang, H., Zhou, G., Hu, J.: Bottom-up synthesis and structural design strategy for graphene quantum dots with tunable emission to the near infrared region. Carbon 142, 673–684 (2019) Baker, S.N., Baker, G.A.: Luminescent Carbon Nanodots: Emergent Nanolights. Angew. Chem. Int. Ed. 49, 6726–6744 (2010) Zhu, H., Wang, X., Li, Y., Wang, Z., Yang, F., Yang, X.: Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 34, 5118–5120 (2009) Sharma, A., Das, J.: Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J. Nanobiotechnology 17, 92 (2019) Chen, W., Lv, G., Hu, W., Li, D., Chen, S., Dai, Z.: Synthesis and applications of graphene quantum dots: a review. Nanotechnol. Rev. 7, 157–185 (2018) Dong, Y.Q., Shao, J.W., Chen, C.Q., Li, H., Wang, R.X., Chi, Y.W., Lin, X.M., Chen, G.N.: Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50, 4738–4743 (2012) Bagheri, Z., Ehtesabi, H., Rahmandoust, M., Ahadian, M.M., Hallaji, Z., Eskandari, F., Jokar, E.: New Insight into the Concept of Carbonization Degree in Synthesis of Carbon Dots to Achieve Facile Smartphone Based Sensing Platform. Sci. Rep. 7, 11013 (2017) Zhao, C., Song, X., Liu, Y., Fu, Y., Ye, L., Wang, N., Wang, F., Li, L., Mohammadniaei, M., Zhang, M., Zhang, Q., Liu, J.: Synthesis of graphene quantum dots and their applications in drug delivery. J. Nanobiotechnology 18, 142 (2020) Chandra, S., Das, P., Bag, S., Laha, D., Pramanik, P.: Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale 3, 1533–1540 (2011) de Medeiros, T.V., Manioudakis, J., Noun, F., Macairan, J.-R., Victoria, F., Naccache, R.: Microwave-assisted synthesis of carbon dots and their applications. J. Mater. Chem. C 7, 7175–7195 (2019) Sharma, V., Tiwari, P., Mobin, S.M.: Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J. Mater. Chem. B 5, 8904–8924 (2017) Nair, A.,Haponiuk, J. T.,Thomas, S.,Gopi, S.: Natural carbon-based quantum dots and their applications in drug delivery: A review. Biomed. Pharmacother. 132, 110834 (2020) Shen, J., Shang, S., Chen, X., Wang, D., Cai, Y.: Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Mater Sci Eng C Mater Biol Appl. 76, 856–864 (2017) Wang, Y., Hu, A.: Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C 2, 6921–6939 (2014) Shin, J.H., Guo, J., Zhao, T.T., Guo, Z.X.: Functionalized Carbon Dots on Graphene as Outstanding Non-Metal Bifunctional Oxygen Electrocatalyst. Small 15, 1900296 (2019) Zhang, B., Xiao, C.H., Xiang, Y., Dong, B.T., Ding, S.J., Tang, Y.H.: Nitrogen-Doped Graphene Quantum Dots Anchored on Thermally Reduced Graphene Oxide as an Electrocatalyst for the Oxygen Reduction Reaction. ChemElectroChem 3, 864–870 (2016) Zhang, P., Hu, Q., Yang, X.J., Hou, X.L., Mi, J.L., Liu, L., Dong, M.D.: Size effect of oxygen reduction reaction on nitrogen-doped graphene quantum dots. RSC Adv. 8, 531–536 (2018) Ye, J., Ni, K., Liu, J., Chen, G., Ikram, M., Zhu, Y.: Oxygen-Rich Carbon Quantum Dots as Catalysts for Selective Oxidation of Amines and Alcohols. ChemCatChem 10, 259–265 (2018) He, D.P., Tang, H.L., Kou, Z.K., Pan, M., Sun, X.L., Zhang, J.J., Mu, S.C.: Engineered Graphene Materials: Synthesis and Applications for Polymer Electrolyte Membrane Fuel Cells. Adv. Mater. 29, 1601741 (2017) Lim, S.Y., Shen, W., Gao, Z.: Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015) Wu, Z.L., Zhang, P., Gao, M.X., Liu, C.F., Wang, W., Leng, F., Huang, C.Z.: One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk - natural proteins. J. Mater. Chem. B 1, 2868–2873 (2013) Barbooti, M.M., Al-Sammerrai, D.A.: Thermal decomposition of citric acid. Thermochim. Acta 98, 119–126 (1986) Wang, S., Chen, Z.-G., Cole, I., Li, Q.: Structural evolution of graphene quantum dots during thermal decomposition of citric acid and the corresponding photoluminescence. Carbon 82, 304–313 (2015) Hill, S., Galan, M.C.: Fluorescent carbon dots from mono- and polysaccharides: synthesis, properties and applications. Beilstein J. Org. Chem. 13, 675–693 (2017) Klinger, K.M., Liebner, F., Fritz, I., Potthast, A., Rosenau, T.: Formation and Ecotoxicity of N-Heterocyclic Compounds on Ammoxidation of Mono- and Polysaccharides. J. Agric. Food Chem. 61, 9004–9014 (2013) Demir-Cakan, R., Baccile, N., Antonietti, M., Titirici, M.-M.: Carboxylate-Rich Carbonaceous Materials via One-Step Hydrothermal Carbonization of Glucose in the Presence of Acrylic Acid. Chem. Mater. 21, 484–490 (2009) Peng, H., Li, Y., Jiang, C., Luo, C., Qi, R., Huang, R., Duan, C.-G., Travas-Sejdic, J.: Tuning the properties of luminescent nitrogen-doped carbon dots by reaction precursors. Carbon 100, 386–394 (2016) Tang, L.B., Ji, R.B., Cao, X.K., Lin, J.Y., Jiang, H.X., Li, X.M., Teng, K.S., Luk, C.M., Zeng, S.J., Hao, J.H., Lau, S.P.: Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots. ACS Nano 6, 5102–5110 (2012) Yang, Z.-C., Li, X., Wang, J.: Intrinsically fluorescent nitrogen-containing carbon nanoparticles synthesized by a hydrothermal process. Carbon 49, 5207–5212 (2011) Barzetti, T.,Selli, E.,Moscotti, D.,Forni, L.: Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts. J. Chem. Soc., Faraday Trans. 92, 1401–1407 (1996) Randhawa, H.S., Kapoor, J.L.: CN Stretching frequencies in amide systems. J. Comput. Chem. 2, 12–13 (1981) Lazar, P., Mach, R., Otyepka, M.: Spectroscopic Fingerprints of Graphitic, Pyrrolic, Pyridinic, and Chemisorbed Nitrogen in N-Doped Graphene. J. Phys. Chem. C 123, 10695–10702 (2019) Tian, L., Ghosh, D., Chen, W., Pradhan, S., Chang, X.J., Chen, S.W.: Nanosized Carbon Particles From Natural Gas Soot. Chem. Mater. 21, 2803–2809 (2009) Liu, H.P., Ye, T., Mao, C.D.: Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed. 46, 6473–6475 (2007) Song, L.Q., Shi, J.J., Lu, J., Lu, C.: Structure observation of graphene quantum dots by single-layered formation in layered confinement space. Chem. Sci. 6, 4846–4850 (2015) Linehan, K., Doyle, H.: Size controlled synthesis of carbon quantum dots using hydride reducing agents. J. Mater. Chem. C 2, 6025–6031 (2014) Rigodanza, F., Burian, M., Arcudi, F., Đorđević, L., Amenitsch, H., Prato, M.: Snapshots into carbon dots formation through a combined spectroscopic approach. Nat. Commun. 12, 2640 (2021) Ewels, C.P., Glerup, M.: Nitrogen doping in carbon nanotubes. J. Nanosci. Nanotechnol. 5, 1345–1363 (2005) Simoes, E. F. C.,Esteves da Silva, J. C. G.,Leitao, J. M. M.: Carbon dots from tryptophan doped glucose for peroxynitrite sensing. Anal. Chim. Acta 852, 174–180 (2014) Mazzotta, E., Rella, S., Turco, A., Malitesta, C.: XPS in development of chemical sensors. RSC Adv. 5, 83164–83186 (2015) Chen, Y., Xie, B., Ren, Y., Yu, M., Qu, Y., Xie, T., Zhang, Y., Wu, Y.: Designed nitrogen doping of few-layer graphene functionalized by selective oxygenic groups. Nanoscale Res. Lett. 9, 646 (2014) Wang, D., Wang, Z.Y., Zhan, Q.Q., Pu, Y., Wang, J.X., Foster, N.R., Dai, L.M.: Facile and Scalable Preparation of Fluorescent Carbon Dots for Multifunctional Applications. Eng. J. 3, 402–408 (2017) Senel, B., Demir, N., Buyukkoroglu, G., Yildiz, M.: Graphene quantum dots: Synthesis, characterization, cell viability, genotoxicity for biomedical applications. Saudi Pharm. J. 27, 846–858 (2019) Becerra-Arciniegas, R. A.,Narducci, R.,Ercolani, G.,Antonaroli, S.,Sgreccia, E.,Pasquini, L.,Knauth, P.,Di Vona, M. L.: Alkaline stability of model anion exchange membranes based on poly (phenylene oxide) (PPO) with grafted quaternary ammonium groups: Influence of the functionalization route. Polymer 185, 121931 (2019) Ding, H.,Li, X. H.,Chen, X. B.,Wei, J. S.,Li, X. B.,Xiong, H. M.: Surface states of carbon dots and their influences on luminescence. J. Appl. Phys. 127, 231101 (2020) Ciotta, E., Prosposito, P., Tagliatesta, P., Lorecchio, C., Stella, L., Kaciulis, S., Soltani, P., Placidi, E., Pizzoferrato, R.: Discriminating between Different Heavy Metal Ions with Fullerene-Derived Nanoparticles. Sensors 18, 1496 (2018) Lin, L.X., Zhang, S.W.: Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem. Commun. 48, 10177–10179 (2012) Ciotta, E., Prosposito, P., Pizzoferrato, R.: Positive curvature in Stern-Volmer plot described by a generalized model for static quenching. J. Lumin. 206, 518–522 (2019) Zhang, C.F., Cui, Y.Y., Song, L., Liu, X.F., Hu, Z.B.: Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta 150, 54–60 (2016) Sun, J., Yang, S.W., Wang, Z.Y., Shen, H., Xu, T., Sun, L.T., Li, H., Chen, W.W., Jiang, X.Y., Ding, G.Q., Kang, Z.H., Xie, X.M., Jiang, M.H.: Ultra-High Quantum Yield of Graphene Quantum Dots: Aromatic-Nitrogen Doping and Photoluminescence Mechanism. Part. Part. Syst. Charact. 32, 434–440 (2015) Zhang, X.X., Zhang, W.J., Tang, S.K.: L-Tryptophan functionalized graphene quantum dots as a fluorescence indicator for pH detection in real water. J. Photochem. Photobiol. A 372, 71–77 (2019) Zhao, H.G., Liu, G.J., You, S.J., Camargo, F.V.A., Zavelani-Rossi, M., Wang, X.H., Sun, C.C., Liu, B., Zhang, Y.M., Han, G.T., Vomiero, A., Gong, X.: Gram-scale synthesis of carbon quantum dots with a large Stokes shift for the fabrication of eco-friendly and high-efficiency luminescent solar concentrators. Energy Environ. Sci. 14, 12 (2021) Kausar, A.: Polymer/carbon-based quantum dot nanocomposite: forthcoming materials for technical application. J. Macromol. Sci. A 56, 341–356 (2019) Ding, Y., Zhang, F., Xu, J., Miao, Y., Yang, Y., Liu, X., Xu, B.: Synthesis of short-chain passivated carbon quantum dots as the light emitting layer towards electroluminescence. RSC Adv. 7, 28754–28762 (2017) Deng, X., Feng, Y., Li, H., Du, Z., Teng, Q., Wang, H.: N-doped carbon quantum dots as fluorescent probes for highly selective and sensitive detection of Fe3+ ions. Particuology 41, 94–100 (2018) Hou, H.S., Banks, C.E., Jing, M.J., Zhang, Y., Ji, X.B.: Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life. Adv. Mater. 27, 7861–7866 (2015) Wu, J., Ma, S., Sun, J., Gold, J.I., Tiwary, C., Kim, B., Zhu, L., Chopra, N., Odeh, I.N., Vajtai, R., Yu, A.Z., Luo, R., Lou, J., Ding, G., Kenis, P.J.A., Ajayan, P.M.: A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 7, 13869 (2016)