Tunable dipole and carrier mobility for a few layer Janus MoSSe structure

Journal of Materials Chemistry C - Tập 6 Số 7 - Trang 1693-1700
Wen-Jin Yin1,2,3,4,5, Bo Wen6,2,3, Guozheng Nie3,7,4,5, Xiaolin Wei3,8,9,10, Bo Sun11,2,3,12,13
1Beijing Computational Science Research Center
2Beijing Computational Science Research Center, Beijing 100084, China
3China
4School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
5Xiangtan 411201
6Beijing 100084
7Hunan University of Science and Technology
8Department of Physics and Laboratory for Quantum Engineering and Micro–Nano Energy Technology
9Xiangtan 411105
10Xiangtan University
11Beihang University
12School of Physics
13School of Physics, Beihang University, Beijing 100083, China

Tóm tắt

Transition metal chalcogenides have attracted considerable attention for the further development of nanoscale devices, however low carrier mobility seriously prevents its further application.

Từ khóa


Tài liệu tham khảo

Ong, 2016, Chem. Rev., 116, 7159, 10.1021/acs.chemrev.6b00075

Miro, 2014, Angew. Chem., Int. Ed. Engl., 53, 3015, 10.1002/anie.201309280

Tan, 2016, J. Am. Chem. Soc., 138, 16612, 10.1021/jacs.6b11683

Li, 2017, ACS Nano, 11, 3752, 10.1021/acsnano.6b08415

Shayeganfar, 2017, Phys. Rev. B: Condens. Matter Mater. Phys., 95, 144109, 10.1103/PhysRevB.95.144109

Novoselov, 2005, Nature, 438, 197, 10.1038/nature04233

Geim, 2009, Science, 324, 1530, 10.1126/science.1158877

Novoselov, 2004, Science, 306, 666, 10.1126/science.1102896

Hui Zhang, 2014, J. Mater. Chem. A, 2, 15389, 10.1039/C4TA03134B

Chhowalla, 2013, Nat. Chem., 5, 263, 10.1038/nchem.1589

Ataca, 2012, J. Phys. Chem. C, 116, 8983, 10.1021/jp212558p

Karunadasa, 2012, Science, 335, 698, 10.1126/science.1215868

Kapilashrami, 2014, Chem. Rev., 114, 9662, 10.1021/cr5000893

Schneider, 2014, Chem. Rev., 114, 9919, 10.1021/cr5001892

Xiang, 2012, J. Am. Chem. Soc., 134, 6575, 10.1021/ja302846n

Yun, 2012, Phys. Rev. B: Condens. Matter Mater. Phys., 85, 033305, 10.1103/PhysRevB.85.033305

Fathipour, 2014, Appl. Phys. Lett., 105, 192101, 10.1063/1.4901527

Radisavljevic, 2011, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279

Duerloo, 2012, J. Phys. Chem. Lett., 3, 2871, 10.1021/jz3012436

Dong, 2017, ACS Nano, 11, 8242, 10.1021/acsnano.7b03313

Guo, 2017, Appl. Phys. Lett., 110, 163102, 10.1063/1.4981877

Li, 2014, Phys. Rev. Lett., 112, 018301, 10.1103/PhysRevLett.112.018301

Lu, 2017, Nat. Nanotechnol., 12, 744, 10.1038/nnano.2017.100

Zhang, 2017, ACS Nano, 11, 8192, 10.1021/acsnano.7b03186

Kresse, 1993, Phys. Rev. B: Condens. Matter Mater. Phys., 47, 558, 10.1103/PhysRevB.47.558

Furthmuler, 1996, Phys. Rev. B: Condens. Matter Mater. Phys., 54, 11169, 10.1103/PhysRevB.54.11169

Heyd, 2006, J. Chem. Phys., 124, 219906, 10.1063/1.2204597

Grimme, 2010, J. Chem. Phys., 132, 154104(1), 10.1063/1.3382344

Li, 2015, J. Mater. Chem. C, 3, 6284, 10.1039/C5TC00910C

Bruzzone, 2011, Appl. Phys. Lett., 99, 222108, 10.1063/1.3665183

Lin, 2013, Nano Lett., 13, 3262, 10.1021/nl4013979