Tunable Emissions of Upconversion Fluorescence for Security Applications

Advanced Optical Materials - Tập 7 Số 6 - 2019
Weijing Yao1, Qingyong Tian2,1, Wei Wu1,3
1Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan 430072, P. R. China
2College of Materials Science & Engineering Zhengzhou University Zhengzhou 450052 P. R. China
3National & Local Joint Engineering Research Center of Advanced Packaging Materials Developing Technology Hunan University of Technology Zhuzhou 412007 P. R. China

Tóm tắt

Abstract

The rampant appearance of counterfeiting has a serious adverse effect on every aspect in the global markets. Thus, the development of high‐tech security strategies has become an urgent challenge. Recently, lanthanide ions (Ln3+) doped materials open new avenues for concealing factual data and shield against counterfeiting because of their unique optical characteristics of color‐tunable emissions under near‐infrared excitation. The present review surveys the recent advances in Ln3+‐doped upconversion crystals (UCCs) as fluorescent functional inks toward designable and high‐level anti‐counterfeiting patterns and graphical encoding. The great achievements of fabrication of versatile security patterns can be ascribed to the combination of the single or multiple colorful UCCs with polymers, additives, and solvents. Moreover, the crucial factors including underlying mechanisms, synthetic methods of upconversion fluorescence materials, and the diverse printing technologies employed for patterning the fluorescence images have been highlighted, and the corresponding challenges and opportunities in this promising research area are presented. This review will help providing a fundamental understanding and guidance to rational design fluorescence optical labels based on Ln3+‐doped UCCs for broadening their applications in high‐level security fields.

Từ khóa


Tài liệu tham khảo

10.1039/C7TC00080D

10.1039/C3NR04375D

10.1039/c3tc00818e

10.1002/anie.200904538

10.1002/anie.201700011

10.1039/C8DT02475H

10.1002/adfm.201400298

10.1021/nl050469y

10.1021/acs.chemrev.5b00049

10.1039/c3nr02734a

10.1039/c2cs15357b

10.1039/c2nr30389b

10.1002/anie.201005159

10.1166/sam.2011.1137

10.1039/C2NR33239F

Tian Q., 2018, Nanoscale Horiz.

10.1039/C4CS00205A

10.1016/j.apcatb.2017.01.023

10.1038/nmat3149

10.1039/C4CS00163J

10.1002/smll.201602843

10.1039/C7NR01403A

10.1021/nn201083j

10.1088/0957-4484/20/18/185301

10.1016/j.matchemphys.2013.01.043

10.1038/nnano.2015.251

10.1038/nnano.2013.171

10.1063/1.4971966

10.1016/j.forsciint.2010.09.020

10.1021/acs.langmuir.5b01151

10.1039/C4TC02065K

10.1039/C6NR01353H

10.1039/C7NR05744J

10.1021/cr020357g

10.1016/S0925-3467(98)00043-3

10.1039/C4CS00178H

10.1016/j.jlumin.2010.07.018

10.1016/0022-2313(90)90189-I

10.1063/1.91044

10.1063/1.1861975

10.1021/ja3111048

10.1039/C0JM02948C

10.1039/C1NR11365H

10.1039/C7TC00757D

10.1039/c0jm03394d

10.1039/c3cp52248b

10.1038/ncomms13059

10.1016/j.nantod.2013.11.003

10.1039/c3tc00936j

10.1063/1.2561079

10.1002/anie.201504518

10.1039/C8CS00124C

10.1021/acs.chemmater.5b00775

10.1002/adma.201104741

10.1039/c3cs60060b

10.1021/cr4001594

10.1021/cr400425h

10.1039/c3nr03642a

10.1021/acsnano.7b02466

10.1039/C4TC00129J

10.1039/b717363f

10.1021/ja207078s

10.1016/j.biomaterials.2012.04.025

10.1002/adma.200402046

10.1039/c2cc33052k

10.1039/C2NR32482B

10.1021/acssuschemeng.7b02806

10.1016/j.jlumin.2006.01.136

10.1039/C7TA07529D

10.1039/c1gc15158d

10.1021/ja800868a

10.1039/c1jm12950c

10.1002/adma.200700144

10.1038/nature03968

10.1039/C5NR07681A

10.1021/jp073919e

10.1021/nn100457j

10.1021/jp8004713

10.1063/1.2783476

10.1088/0957-4484/20/27/275603

10.1002/ange.201003959

10.1002/anie.201309503

10.1002/anie.201510609

10.1021/cm2036844

Abel K. A., 2011, J. Phys. Chem. C, 2, 185

10.1021/ja302717u

10.1039/c3tc32233e

10.1016/j.materresbull.2018.03.003

10.1002/adma.201304903

10.1002/adma.201101868

10.1007/s00340-010-4247-8

10.1021/acsnano.5b07873

10.1002/anie.201306811

Yao W., 2018, Sci. China Mater.

10.1021/ja204504w

10.1039/C5CS00582E

10.1038/s41467-017-00916-7

10.1039/c1jm13684d

10.1021/nn405387t

10.1038/ncomms10304

10.1038/nnano.2014.317

10.1038/s41598-017-01611-9

10.1038/ncomms5312

10.1039/C8TC01433G

10.1021/nl403383w

10.1002/adfm.201800369

10.1016/j.jlumin.2017.01.025

10.1088/0957-4484/23/18/185305

10.1039/C4NR06944G

10.1039/C6TC01513A

10.1039/C6NR09083D

10.1088/0957-4484/23/39/395201

10.1002/adma.200300385

10.1002/adma.200901141

10.1039/C6NR07123F

10.1016/j.polymer.2018.04.020

10.1002/pen.24675

10.1016/j.polymer.2017.09.009

10.1016/j.polymer.2018.06.046

10.1016/j.polymer.2018.05.017

10.1016/j.polymer.2017.07.083

10.1016/j.polymer.2018.01.063

10.1016/j.bios.2018.08.037

10.1016/j.carbon.2018.09.006

10.1038/nature10344

10.1039/C5NR06965C

10.1002/aelm.201600260

10.1021/nn2044609

10.1039/C3TC31993H

10.1088/0957-4484/16/10/074

10.1039/b710879f

10.1021/acsnano.7b00559

10.1039/C7QI00194K

10.1016/j.polymer.2018.04.008

10.1016/j.memsci.2018.03.080

10.1007/s10965-018-1518-2

10.1002/pat.4346

10.1021/acs.langmuir.8b00789

10.1021/acs.macromol.8b01124

10.1021/acssuschemeng.8b01637

10.1002/tcr.201800008

10.1039/C8TC02391C

10.1021/acs.jpcc.7b07646

10.1039/C8TA06571C

10.1039/C8TC00452H

10.1039/C7NR03682E

10.1002/chem.201704076

10.1021/acsami.7b06436

10.1002/anie.201206791

10.1002/anie.201602445

10.1002/admt.201800150

10.1039/c1nr10752f

10.1039/C8CP00363G

10.1039/C7TC01585B

10.1002/adfm.201707365