Tunable Circular Dichroism of Achiral Graphene Plasmonic Structures

Plasmonics - Tập 12 - Trang 829-833 - 2016
Tiankun Wang1, Yongkai Wang1, Lina Luo1, Li Wang1, Zhongyue Zhang1
1School of Physics and Information Technology, Shaanxi Normal University, Xi’an, China

Tóm tắt

Graphene bilayered split rings (BSRs) are proposed to generate tunable circular dichroism (CD). BSRs with traditional materials do not elicit the CD effect because of C4 symmetry. By contrast, BSRs with graphene can achieve the CD effect by varying the Fermi energy of each part of the split rings. The CD signal can be reversed from positive to negative or vice versa by exchanging the Fermi energy. CD effects can also be tuned by varying the Fermi energies of the different parts. This phenomenon indicates that the chirality of BSRs gradually change as the Fermi energy varies. This concept provides a method to change chirality and dynamically vary the CD effect without rebuilding the structures.

Tài liệu tham khảo

Hentschel M, Wu L, Schäferling M, Bai P, Li EP, Giessen H (2012) Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons. ACS Nano 6(11):10355–10365 Cui Y, Kang L, Lan S, Rodrigues S, Cai W (2014) Giant chiral optical response from a twisted-arc metamaterial. Nano Lett 14(2):1021–1025 Plum E, Liu XX, Fedotov VA, Chen Y, Tsai DP, Zheludev NI (2009) Metamaterials: optical activity without chirality. Phys Rev Lett 102(11):113902 Zhang W, Wang Y, Wen X, Zhang Z (2015) Giant circular dichroism induced by silver nanocuboid heterodimers. Appl Opt 54(31):9359–9363 Cao T, Wei C, Zhang L (2014) Modeling of multi-band circular dichroism using metal/dielectric/metal achiral metamaterials. Optical Materials Express 4(8):1526–1534 Gansel JK, Wegener M, Burger S, Linden S (2010) Gold helix photonic metamaterials: a numerical parameter study. Opt Express 18(2):1059–1069 Zhang ZY, Zhao YP (2011) The visible extinction peaks of Ag nanohelixes: a periodic effective dipole model. Appl Phys Lett 98(8):083102 Wu S, Xu S, Zhang Y, Wu Y, Jiang J, Wang Q, Zhu Y (2014) Asymmetric transmission and optical rotation of a quasi-3D asymmetric metallic structure. Opt Lett 39(22):6426–6429 Wu L, Yang Z, Cheng Y, Lu Z, Zhang P, Zhao M, Duan J (2013) Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials. Opt Express 21(5):5239–5246 Cao T, Zhang L, Simpson RE, Wei C, Cryan MJ (2013) Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials. Opt Express 21(23):27841–27851 Yin X, Schäferling M, Metzger B, Giessen H (2013) Interpreting chiral nanophotonic spectra: the plasmonic born–Kuhn model. Nano Lett 13(12):6238–6243 Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271 Ligato N, Cupolillo A, Sindona A, Riccardi P, Pisarra M, Caputi LS (2014) A comparative study of the plasmonic properties of graphene on lattice-matched and lattice-mismatched Ni surfaces. Surf Sci 626:40–43 Fürst JA, Pedersen JG, Flindt C, Mortensen NA, Brandbyge M, Pedersen TG, Jauho AP (2009) Electronic properties of graphene antidot lattices. New J Phys 11(9):095020 Weser M, Rehder Y, Horn K, Sicot M, Fonin M, Preobrajenski AB, Dedkov YS (2010) Induced magnetism of carbon atoms at the graphene/Ni (111) interface. Appl Phys Lett 96(1):012504 Yuan S, Roldán R, Jauho AP, Katsnelson MI (2013) Electronic properties of disordered graphene antidot lattices. Phys Rev B 87(8):085430 Cheng H, Chen S, Yu P, Duan X, Xie B, Tian J (2013) Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips. Appl Phys Lett 103(20):203112 Lu H, Zeng C, Zhang Q, Liu X, Hossain MM, Reineck P, Gu M (2015) Graphene-based active slow surface plasmon polaritons. Scientific reports. 5. Carrasco E, Tamagnone M, Mosig JR, Low T, Perruisseau-Carrier J (2015) Gate-controlled mid-infrared light bending with aperiodic graphene nanoribbons array. Nanotechnology 26(13):134002