Tumour necrosis factor - alpha mediated mechanisms of cognitive dysfunction
Tóm tắt
Từ khóa
Tài liệu tham khảo
Collins P.Y., Patel V., Joestl S.S., March D., Insel T.R., Daar A.S., et al., Grand challenges in global mental health, Nature, 2011, 475, 27–30
Lieberman J.A., Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective, Biol. Psychiatry, 1999, 46, 729–739
Mandolesi G., Grasselli G., Musumeci G., Centonze D., Cognitive deficits in experimental autoimmune encephalomyelitis: neuroinflammation and synaptic degeneration, Neurol. Sci., 2010, 31, S255–259
Kupfer D.J., Frank E., Phillips M.L., Major depressive disorder: new clinical, neurobiological, and treatment perspectives, Lancet, 2012, 379, 1045–1055
Zorrilla E.P., Luborsky L., McKay J.R., Rosenthal R., Houldin A., Tax A., et al., The relationship of depression and stressors to immunological assays: a meta-analytic review, Brain. Behav. Immun., 2001, 15, 199–226
Miller A.H., Maletic V., Raison C.L., Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression, Biol. Psychiatry, 2009, 65, 732–741
Sharief M.K., Hentges R., Association between tumor necrosis factoralpha and disease progression in patients with multiple sclerosis, N. Engl. J. Med., 1991, 325, 467–472
Blume J., Douglas S.D., Evans D.L., Immune suppression and immune activation in depression, Brain Behav. Immun., 2011, 25, 221–229
Zunszain P.A., Hepgul N., Pariante C.M., Inflammation and Depression, Curr. Top. Behav. Neurosci., 2012, [Epub ahead of print]
Lieberman A.P., Pitha P.M., Shin H.S., Shin M.L., Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus, Proc. Natl. Acad. Sci. USA, 1989, 86, 6348–6352
Rock R.B., Gekker G., Hu S., Sheng W.S., Cheeran M., Lokensgard J.R., et al., Role of microglia in central nervous system infections, Clin. Microbiol. Rev., 2004, 17, 942–964
Tsakiri N., Kimber I., Rothwell N.J., Pinteaux E., Differential effects of interleukin-1 alpha and beta on interleukin-6 and chemokine synthesis in neurones, Mol. Cell. Neurosci., 2008, 38, 259–265
Kaiya H., Uematsu M., Ofuji M., Nishida A., Takeuchi K., Nozaki M., et al., Elevated plasma prostaglandin E2 levels in schizophrenia, J. Neural. Transm., 1989, 77, 39–46
Dickerson F., Stallings C., Origoni A., Boronow J., Yolken R., C-reactive protein is associated with the severity of cognitive impairment but not of psychiatric symptoms in individuals with schizophrenia, Schizophr. Res., 2007, 93, 261–265
Theodoropoulou S., Spanakos G., Baxevanis C.N., Economou M., Gritzapis A.D., Papamichail M.P., et al., Cytokine serum levels, autologous mixed lymphocyte reaction and surface marker analysis in never medicated and chronically medicated schizophrenic patients, Schizophr. Res., 2001, 47, 13–25
Radewicz K., Garey L.J., Gentleman S.M., Reynolds R., Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics, J. Neuropathol. Exp. Neurol., 2000, 59, 137–150
Bayer T.A., Buslei R., Havas L., Falkai P., Evidence for activation of microglia in patients with psychiatric illnesses, Neurosci. Lett., 1999, 271, 126–128
van Berckel B.N., Bossong M.G., Boellaard R., Kloet R., Schuitemaker A., Caspers E., et al., Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study, Biol. Psychiatry, 2008, 64, 820–822
Doorduin J., de Vries E.F., Willemsen A.T., de Groot J.C., Dierckx R.A., Klein H.C., Neuroinflammation in schizophrenia-related psychosis: a PET study, J. Nucl. Med., 2009, 50, 1801–1807
Niitsu T., Shirayama Y., Matsuzawa D., Hasegawa T., Kanahara N., Hashimoto T., et al., Associations of serum brain-derived neurotrophic factor with cognitive impairments and negative symptoms in schizophrenia, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35, 1836–1840
Campbell S., Marriott M., Nahmias C., MacQueen G.M., Lower hippocampal volume in patients suffering from depression: a metaanalysis, Am. J. Psychiatry, 2004, 161, 598–607
Ziehn M.O., Avedisian A.A., Tiwari-Woodruff S., Voskuhl R.R., Hippocampal CA1 atrophy and synaptic loss during experimental autoimmune encephalomyelitis, EAE, Lab. Invest., 2010, 90, 774–786
Renno T., Krakowski M., Piccirillo C., Lin J.Y., Owens T., TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines, J. Immunol., 1995, 154, 944–953
Appenzeller S., Bertolo M.B., Costallat L.T., Cognitive impairment in rheumatoid arthritis, Methods Find. Exp. Clin. Pharmacol., 2004, 26, 339–343
El-Tantawy A.M., El-Sayed A.E., Kora B.A., Amin R.T., Psychiatric morbidity associated with some cytokines (IL-1beta, IL-12, IL-18 and TNF-alpha) among rheumatoid arthritis patients, Egypt. J. Immunol., 2008, 15, 1–11
Hider S.L., Tanveer W., Brownfield A., Mattey D.L., Packham J.C., Depression in RA patients treated with anti-TNF is common and under-recognized in the rheumatology clinic, Rheumatology (Oxford), 2009, 48, 1152–1154
Aloe L., Tuveri M.A., Levi-Montalcini R., Nerve growth factor and distribution of mast cells in the synovium of adult rats, Clin. Exp. Rheumatol., 1992, 10, 203–204
Stellwagen D., Malenka R.C., Synaptic scaling mediated by glial TNFalpha, Nature, 2006, 440, 1054–1059
Golan H., Levav T., Mendelsohn A., Huleihel M., Involvement of tumor necrosis factor alpha in hippocampal development and function, Cereb. Cortex, 2004, 14, 97–105
Fiore M., Probert L., Kollias G., Akassoglou K., Alleva E., Aloe L., Neurobehavioral alterations in developing transgenic mice expressing TNF-alpha in the brain, Brain Behav. Immun., 1996, 10, 126–138
Baune B.T., Wiede F., Braun A., Golledge J., Arolt V., Koerner H., Cognitive dysfunction in mice deficient for TNF- and its receptors, Am. J. Med. Genet. B Neuropsychiatr. Genet., 2008, 147B, 1056–1064
Stellwagen D., Beattie E.C., Seo J.Y., Malenka R.C., Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha, J. Neurosci., 2005, 25, 3219–3228
Moher D., Liberati A., Tetzlaff J., Altman D.G., Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement, J. Clin. Epidemiol., 2009, 62, 1006–1012
Medawar P.B., Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye, Br. J. Exp. Pathol., 1948, 29, 58–69
Ransohoff R.M., Kivisakk P., Kidd G., Three or more routes for leukocyte migration into the central nervous system, Nat. Rev. Immunol., 2003, 3, 569–581
Streilein J.W., Immune privilege as the result of local tissue barriers and immunosuppressive microenvironments, Curr. Opin. Immunol., 1993, 5, 428–432
Tabakman R., Lecht S., Sephanova S., Arien-Zakay H., Lazarovici P., Interactions between the cells of the immune and nervous system: neurotrophins as neuroprotection mediators in CNS injury, Prog. Brain Res., 2004, 146, 387–401
Garay P.A., McAllister A.K., Novel roles for immune molecules in neural development: implications for neurodevelopmental disorders, Front. Synaptic Neurosci., 2010, 2, 136
Boulanger L.M., Shatz C.J., Immune signalling in neural development, synaptic plasticity and disease, Nat. Rev. Neurosci., 2004, 5, 521–531
Zlokovic B.V., The blood-brain barrier in health and chronic neurodegenerative disorders, Neuron, 2008, 57, 178–201
Banks W.A., Erickson M.A., The blood-brain barrier and immune function and dysfunction, Neurobiol. Dis., 2010, 37, 26–32
Engelhardt B., Regulation of immune cell entry into the central nervous system, Results Probl. Cell. Differ., 2006, 43, 259–280
Brietzke E., Stertz L., Fernandes B.S., Kauer-Sant’anna M., Mascarenhas M., Escosteguy Vargas A., et al., Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder, J. Affect. Disord., 2009, 116, 214–217
Maccioni R.B., Rojo L.E., Fernandez J.A., Kuljis R.O., The role of neuroimmunomodulation in Alzheimer’s disease, Ann. NY Acad. Sci., 2009, 1153, 240–246
Bossu P., Ciaramella A., Salani F., Bizzoni F., Varsi E., Di Iulio F., et al., Interleukin-18 produced by peripheral blood cells is increased in Alzheimer’s disease and correlates with cognitive impairment, Brain Behav. Immun., 2008, 22, 487–492
Pan W., Kastin A.J., TNFalpha transport across the blood-brain barrier is abolished in receptor knockout mice, Exp. Neurol., 2002, 174, 193–200
Miric D., Katanic R., Kisic B., Zoric L., Miric B., Mitic R., et al., Oxidative stress and myeloperoxidase activity during bacterial meningitis: effects of febrile episodes and the BBB permeability, Clin. Biochem., 2010, 43, 246–252
Leib S.L., Tauber M.G., Pathogenesis of bacterial meningitis, Infect. Dis. Clin. North Am., 1999, 13, 527–548, v–vi
Nishioku T., Matsumoto J., Dohgu S., Sumi N., Miyao K., Takata F., et al., Tumor necrosis factor-alpha mediates the blood-brain barrier dysfunction induced by activated microglia in mouse brain microvascular endothelial cells, J. Pharmacol. Sci., 2010, 112, 251–254
Forster C., Burek M., Romero I.A., Weksler B., Couraud P.O., Drenckhahn D., Differential effects of hydrocortisone and TNFalpha on tight junction proteins in an in vitro model of the human blood-brain barrier, J. Physiol., 2008, 586, 1937–1949
Aslam M., Ahmad N., Srivastava R., Hemmer B., TNF-alpha induced NFkappaB signaling and p65 (RelA) overexpression repress Cldn5 promoter in mouse brain endothelial cells, Cytokine, 2012, 57, 269–275
Wake H., Moorhouse A.J., Nabekura J., Functions of microglia in the central nervous system — beyond the immune response, Neuron Glia Biol., 2012, 1–7
Butovsky O., Talpalar A.E., Ben-Yaakov K., Schwartz M., Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective, Mol. Cell. Neurosci., 2005, 29, 381–393
Morgan S.C., Taylor D.L., Pocock J.M., Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades, J. Neurochem., 2004, 90, 89–101
Medana I.M., Hunt N.H., Chaudhri G., Tumor necrosis factor-alpha expression in the brain during fatal murine cerebral malaria: evidence for production by microglia and astrocytes, Am. J. Pathol., 1997, 150, 1473–1486
Tracey K.J., Tumor necrosis factor (cachectin) in the biology of septic shock syndrome, Circ. Shock, 1991, 35, 123–128
Bielefeldt Ohmann H., Campos M., Snider M., Rapin N., Beskorwayne T., Popowych Y., et al., Effect of chronic administration of recombinant bovine tumor necrosis factor to cattle, Vet. Pathol., 1989, 26, 462–472
Probert L., Keffer J., Corbella P., Cazlaris H., Patsavoudi E., Stephens S., et al., Wasting, ischemia, and lymphoid abnormalities in mice expressing T cell-targeted human tumor necrosis factor transgenes, J. Immunol., 1993, 151, 1894–1906
Das S., Basu A., Inflammation: a new candidate in modulating adult neurogenesis, J. Neurosci. Res., 2008, 86, 1199–1208
Albensi B.C., Mattson M.P., Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity, Synapse, 2000, 35, 151–159
Horiuchi T., Mitoma H., Harashima S., Tsukamoto H., Shimoda T., Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents, Rheumatology (Oxford), 2010, 49, 1215–1228
Wajant H., Pfizenmaier K., Scheurich P., Tumor necrosis factor signaling, Cell. Death Differ., 2003, 10, 45–65
Black R.A., Rauch C.T., Kozlosky C.J., Peschon J.J., Slack J.L., Wolfson M.F., et al., A metalloproteinase disintegrin that releases tumournecrosis factor-alpha from cells, Nature, 1997, 385, 729–733
McCoy M.K., Tansey M.G., TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease, J. Neuroinflammation, 2008, 5, 45
Li J., Ramenaden E.R., Peng J., Koito H., Volpe J.J., Rosenberg P.A., Tumor necrosis factor alpha mediates lipopolysaccharide-induced microglial toxicity to developing oligodendrocytes when astrocytes are present, J. Neurosci., 2008, 28, 5321–5330
Kassiotis G., Kollias G., Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: implications for pathogenesis and therapy of autoimmune demyelination, J. Exp. Med., 2001, 193, 427–434
Grell M., Wajant H., Zimmermann G., Scheurich P., The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor, Proc. Natl. Acad. Sci. USA, 1998, 95, 570–575
Hsu H., Xiong J., Goeddel D.V., The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation, Cell, 1995, 81, 495–504
Hsu H., Shu H.B., Pan M.G., Goeddel D.V., TRADD-TRAF2 and TRADDFADD interactions define two distinct TNF receptor 1 signal transduction pathways, Cell, 1996, 84, 299–308
Micheau O., Tschopp J., Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes, Cell, 2003, 114, 181–190
Shu H.B., Takeuchi M., Goeddel D.V., The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex, Proc. Natl. Acad. Sci USA, 1996, 93, 13973–13978
Winston B.W., Lange-Carter C.A., Gardner A.M., Johnson G.L., Riches D.W., Tumor necrosis factor alpha rapidly activates the mitogenactivated protein kinase (MAPK) cascade in a MAPK kinase kinasedependent, c-Raf-1-independent fashion in mouse macrophages, Proc. Natl. Acad. Sci. USA, 1995, 92, 1614–1618
Tobiume K., Matsuzawa A., Takahashi T., Nishitoh H., Morita K., Takeda K., et al., ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis, EMBO Rep., 2001, 2, 222–228
Camandola S., Mattson M.P., NF-kappa B as a therapeutic target in neurodegenerative diseases, Expert Opin. Ther. Targets, 2007, 11, 123–132
Rothe M., Pan M.G., Henzel W.J., Ayres T.M., Goeddel D.V., The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins, Cell, 1995, 83, 1243–1252
Marchetti L., Klein M., Schlett K., Pfizenmaier K., Eisel U.L., Tumor necrosis factor (TNF)-mediated neuroprotection against glutamateinduced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway, J. Biol. Chem., 2004, 279, 32869–32881
Bliss T.V., Collingridge G.L., A synaptic model of memory: long-term potentiation in the hippocampus, Nature, 1993, 361, 31–39
Wang G., Gilbert J., Man H.Y., AMPA receptor trafficking in homeostatic synaptic plasticity: functional molecules and signaling cascades, Neural Plast., 2012, 2012, 825364
Lipsky R.H., Xu K., Zhu D., Kelly C., Terhakopian A., Novelli A., et al., Nuclear factor kappaB is a critical determinant in N-methyl-Daspartate receptor-mediated neuroprotection, J. Neurochem., 2001, 78, 254–264
Beattie E.C., Stellwagen D., Morishita W., Bresnahan J.C., Ha B.K., Von Zastrow M., et al., Control of synaptic strength by glial TNFalpha, Science, 2002, 295, 2282–2285
Butler M.P., O’Connor J.J., Moynagh P.N., Dissection of tumor-necrosis factor-alpha inhibition of long-term potentiation (LTP) reveals a p38 mitogen-activated protein kinase-dependent mechanism which maps to early-but not late-phase LTP, Neuroscience, 2004, 124, 319–326
Bolshakov V.Y., Carboni L., Cobb M.H., Siegelbaum S.A., Belardetti F., Dual MAP kinase pathways mediate opposing forms of long-term plasticity at CA3-CA1 synapses, Nat. Neurosci., 2000, 3, 1107–1112
Wang Q., Walsh D.M., Rowan M.J., Selkoe D.J., Anwyl R., Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5, J. Neurosci., 2004, 24, 3370–3378
Ono K., Han J., The p38 signal transduction pathway: activation and function, Cell. Signal., 2000, 12, 1–13
Pickering M., Cumiskey D., O’Connor J.J., Actions of TNF-alpha on glutamatergic synaptic transmission in the central nervous system, Exp. Physiol., 2005, 90, 663–670
Hallbook F., Evolution of the vertebrate neurotrophin and Trk receptor gene families, Curr. Opin. Neurobiol., 1999, 9, 616–621
Huang E.J., Reichardt L.F., Neurotrophins: roles in neuronal development and function, Annu. Rev. Neurosci., 2001, 24, 677–736
Sofroniew M.V., Howe C.L., Mobley W.C., Nerve growth factor signaling, neuroprotection, and neural repair, Annu. Rev. Neurosci., 2001, 24, 1217–1281
Henderson C.E., Role of neurotrophic factors in neuronal development, Curr. Opin. Neurobiol., 1996, 6, 64–70
Aloe L., Properzi F., Probert L., Akassoglou K., Kassiotis G., Micera A., et al., Learning abilities, NGF and BDNF brain levels in two lines of TNFalpha transgenic mice, one characterized by neurological disorders, the other phenotypically normal, Brain Res., 1999, 840, 125–137
Takei Y., Laskey R., Interpreting crosstalk between TNF-alpha and NGF: potential implications for disease, Trends Mol. Med., 2008, 14, 381–388
Takei Y., Laskey R., Intracellular and intercellular cross talk between NGF and TNF, Adv. Exp. Med. Biol., 2011, 691, 559–565
Saha R.N., Liu X., Pahan K., Up-regulation of BDNF in astrocytes by TNF-alpha: a case for the neuroprotective role of cytokine, J. Neuroimmune Pharmacol., 2006, 1, 212–222
Streit W.J., Mrak R.E., Griffin W.S., Microglia and neuroinflammation: a pathological perspective, J. Neuroinflammation, 2004, 1, 14
Khairova R.A., Machado-Vieira R., Du J., Manji H.K., A potential role for pro-inflammatory cytokines in regulating synaptic plasticity in major depressive disorder, Int. J. Neuropsychopharmacol., 2009, 12, 561–578
Potvin S., Stip E., Sepehry A.A., Gendron A., Bah R., Kouassi E., Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review, Biol. Psychiatry, 2008, 63, 801–808
Schmidt H.D., Shelton R.C., Duman R.S., Functional biomarkers of depression: diagnosis, treatment, and pathophysiology, Neuropsychopharmacology, 2011, 36, 2375–2394
Eyre H., Baune B.T., Neuroimmunological effects of physical exercise in depression, Brain Behav. Immun., 2012, 26, 251–266
Leonard B.E., Myint A., The psychoneuroimmunology of depression, Hum. Psychopharmacol., 2009, 24, 165–175
Brydon L., Harrison N.A., Walker C., Steptoe A., Critchley H.D., Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans, Biol. Psychiatry, 2008, 63, 1022–1029
Reichenberg A., Yirmiya R., Schuld A., Kraus T., Haack M., Morag A., et al., Cytokine-associated emotional and cognitive disturbances in humans, Arch. Gen. Psychiatry, 2001, 58, 445–452
Dantzer R., O’Connor J.C., Freund G.G., Johnson R.W., Kelley K.W., From inflammation to sickness and depression: when the immune system subjugates the brain, Nat. Rev. Neurosci., 2008, 9, 46–56
Dowlati Y., Herrmann N., Swardfager W., Liu H., Sham L., Reim E.K., et al., A meta-analysis of cytokines in major depression, Biol. Psychiatry, 2010, 67, 446–457
Howren M.B., Lamkin D.M., Suls J., Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis, Psychosom. Med., 2009, 71, 171–186
Bernardino L., Agasse F., Silva B., Ferreira R., Grade S., Malva J.O., Tumor necrosis factor-alpha modulates survival, proliferation, and neuronal differentiation in neonatal subventricular zone cell cultures, Stem Cells, 2008, 26, 2361–2371
Tilleux S., Hermans E., Neuroinflammation and regulation of glial glutamate uptake in neurological disorders, J. Neurosci. Res., 2007, 85, 2059–2070
Kaster M.P., Gadotti V.M., Calixto J.B., Santos A.R., Rodrigues A.L., Depressive-like behavior induced by tumor necrosis factor-alpha in mice, Neuropharmacology, 2012, 62, 419–426
You Z., Luo C., Zhang W., Chen Y., He J., Zhao Q., et al., Pro- and antiinflammatory cytokines expression in rat’s brain and spleen exposed to chronic mild stress: Involvement in depression, Behav. Brain Res., 225, 135–141
Kafitz K.W., Rose C.R., Konnerth A., Neurotrophin-evoked rapid excitation of central neurons, Prog. Brain Res., 2000, 128, 243–249
Gavillet M., Allaman I., Magistretti P.J., Modulation of astrocytic metabolic phenotype by proinflammatory cytokines, Glia, 2008, 56, 975–989
Hamidi M., Drevets W.C., Price J.L., Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes, Biol. Psychiatry, 2004, 55, 563–569
Ongur D., Drevets W.C., Price J.L., Glial reduction in the subgenual prefrontal cortex in mood disorders, Proc. Natl. Acad. Sci. USA, 1998, 95, 13290–13295
Steiner J., Bielau H., Brisch R., Danos P., Ullrich O., Mawrin C., et al., Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide, J. Psychiatr. Res., 2008, 42, 151–157
Arguello P.A., Gogos J.A., Cognition in mouse models of schizophrenia susceptibility genes, Schizophr. Bull., 2010, 36, 289–300
Drzyzga L., Obuchowicz E., Marcinowska A., Herman Z.S., Cytokines in schizophrenia and the effects of antipsychotic drugs, Brain Behav. Immun., 2006, 20, 532–545
Muller N., Riedel M., Gruber R., Ackenheil M., Schwarz M.J., The immune system and schizophrenia. An integrative view, Ann. NY Acad. Sci., 2000, 917, 456–467
Coelho F.M., Reis H.J., Nicolato R., Romano-Silva M.A., Teixeira M.M., Bauer M.E., et al., Increased serum levels of inflammatory markers in chronic institutionalized patients with schizophrenia, Neuroimmunomodulation, 2008, 15, 140–144
Boin F., Zanardini R., Pioli R., Altamura C.A., Maes M., Gennarelli M., Association between -G308A tumor necrosis factor alpha gene polymorphism and schizophrenia, Mol. Psychiatry, 2001, 6, 79–82
Schwab S.G., Mondabon S., Knapp M., Albus M., Hallmayer J., Borrmann-Hassenbach M., et al., Association of tumor necrosis factor alpha gene — G308A polymorphism with schizophrenia, Schizophr. Res., 2003, 65, 19–25
Wilson A.G., Symons J.A., McDowell T.L., McDevitt H.O., Duff G.W., Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation, Proc. Natl. Acad. Sci. USA, 1997, 94, 3195–3199
Shi J., Levinson D.F., Duan J., Sanders A.R., Zheng Y., Pe’er I., et al., Common variants on chromosome 6p22.1 are associated with schizophrenia, Nature, 2009, 460, 753–757
Ingason A., Rujescu D., Cichon S., Sigurdsson E., Sigmundsson T., Pietilainen O.P., et al., Copy number variations of chromosome 16p13.1 region associated with schizophrenia, Mol. Psychiatry, 2011, 16, 17–25
Stefansson H., Sigurdsson E., Steinthorsdottir V., Bjornsdottir S., Sigmundsson T., Ghosh S., et al., Neuregulin 1 and susceptibility to schizophrenia, Am. J. Hum. Genet., 2002, 71, 877–892
Li B., Woo R.S., Mei L., Malinow R., The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity, Neuron, 2007, 54, 583–597
Marballi K., Quinones M.P., Jimenez F., Escamilla M.A., Raventos H., Soto-Bernardini M.C., et al., In vivo and in vitro genetic evidence of involvement of neuregulin 1 in immune system dysregulation, J. Mol. Med. (Berl), 2010, 88, 1133–1141
Durany N., Michel T., Zochling R., Boissl K.W., Cruz-Sanchez F.F., Riederer P., et al., Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psychoses, Schizophr. Res., 2001, 52, 79–86
Green M.J., Matheson S.L., Shepherd A., Weickert C.S., Carr V.J., Brainderived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis, Mol. Psychiatry, 2011, 16, 960–972
Lassmann H., Bruck W., Lucchinetti C., Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy, Trends Mol. Med., 2001, 7, 115–121
Korner H., Sedgwick J.D., Tumour necrosis factor and lymphotoxin: molecular aspects and role in tissue-specific autoimmunity, Immunol. Cell Biol., 1996, 74, 465–472
Ruddle N.H., Bergman C.M., McGrath K.M., Lingenheld E.G., Grunnet M.L., Padula S.J., et al., An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis, J. Exp. Med., 1990, 172, 1193–1200
Korner H., Lemckert F.A., Chaudhri G., Etteldorf S., Sedgwick J.D., Tumor necrosis factor blockade in actively induced experimental autoimmune encephalomyelitis prevents clinical disease despite activated T cell infiltration to the central nervous system, Eur. J. Immunol., 1997, 27, 1973–1981
Selmaj K., Raine C.S., Cannella B., Brosnan C.F., Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions, J. Clin. Invest., 1991, 87, 949–954
Kuroda Y., Shimamoto Y., Human tumor necrosis factor-alpha augments experimental allergic encephalomyelitis in rats, J. Neuroimmunol., 1991, 34, 159–164
Barten D.M., Ruddle N.H., Vascular cell adhesion molecule-1 modulation by tumor necrosis factor in experimental allergic encephalomyelitis, J. Neuroimmunol., 1994, 51, 123–133
Korner H., Riminton D.S., Strickland D.H., Lemckert F.A., Pollard J.D., Sedgwick J.D., Critical points of tumor necrosis factor action in central nervous system autoimmune inflammation defined by gene targeting, J. Exp. Med., 1997, 186, 1585–1590
Suvannavejh G.C., Lee H.O., Padilla J., Dal Canto M.C., Barrett T.A., Miller S.D., Divergent roles for p55 and p75 tumor necrosis factor receptors in the pathogenesis of MOG(35–55)-induced experimental autoimmune encephalomyelitis, Cell. Immunol., 2000, 205, 24–33
D’Intino G., Paradisi M., Fernandez M., Giuliani A., Aloe L., Giardino L., et al., Cognitive deficit associated with cholinergic and nerve growth factor down-regulation in experimental allergic encephalomyelitis in rats, Proc. Natl. Acad. Sci. USA, 2005, 102, 3070–3075
Roosendaal S.D., Hulst H.E., Vrenken H., Feenstra H.E., Castelijns J.A., Pouwels P.J., et al., Structural and functional hippocampal changes in multiple sclerosis patients with intact memory function, Radiology, 2010, 255, 595–604
Anisman H., Merali Z., Hayley S., Neurotransmitter, peptide and cytokine processes in relation to depressive disorder: comorbidity between depression and neurodegenerative disorders, Prog. Neurobiol., 2008, 85, 1–74
Terrando N., Monaco C., Ma D., Foxwell B.M., Feldmann M., Maze M., Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline, Proc. Natl. Acad. Sci. USA, 2010, 107, 20518–20522
McAfoose J., Baune B.T., Evidence for a cytokine model of cognitive function, Neurosci. Biobehav. Rev., 2009, 33, 355–366
Peschon J.J., Torrance D.S., Stocking K.L., Glaccum M.B., Otten C., Willis C.R., et al., TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation, J. Immunol., 1998, 160, 943–952
Longhi L., Ortolano F., Zanier E.R., Perego C., Stocchetti N., De Simoni M.G., Effect of traumatic brain injury on cognitive function in mice lacking p55 and p75 tumor necrosis factor receptors, Acta Neurochir. Suppl., 2008, 102, 409–413
McAfoose J., Koerner H., Baune B.T., The effects of TNF deficiency on age-related cognitive performance, Psychoneuroendocrinology, 2009, 34, 615–619
Akassoglou K., Probert L., Kontogeorgos G., Kollias G., Astrocytespecific but not neuron-specific transmembrane TNF triggers inflammation and degeneration in the central nervous system of transgenic mice, J. Immunol., 1997, 158, 438–445
Dean B., Tawadros N., Scarr E., Gibbons A.S., Regionallyspecific changes in levels of tumour necrosis factor in the dorsolateral prefrontal cortex obtained postmortem from subjects with major depressive disorder, J. Affect. Disord., 2010, 120, 245–248