Tumour necrosis factor - alpha mediated mechanisms of cognitive dysfunction

Bernhard T. Baune1, Marie-Lou Camara, Harris A. Eyre, Catharine Jawahar1, Helen Anscomb2, Heinrich Körner3
1Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
2Discipline of Anatomy, School of Medicine, James Cook University, Townsville QLD, Australia
3Cellular Immunology Laboratory, Menzies Research Institute Tasmania, Hobart, Tasmania, Australia

Tóm tắt

Abstract

Từ khóa


Tài liệu tham khảo

Collins P.Y., Patel V., Joestl S.S., March D., Insel T.R., Daar A.S., et al., Grand challenges in global mental health, Nature, 2011, 475, 27–30

Lieberman J.A., Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective, Biol. Psychiatry, 1999, 46, 729–739

Mandolesi G., Grasselli G., Musumeci G., Centonze D., Cognitive deficits in experimental autoimmune encephalomyelitis: neuroinflammation and synaptic degeneration, Neurol. Sci., 2010, 31, S255–259

Kupfer D.J., Frank E., Phillips M.L., Major depressive disorder: new clinical, neurobiological, and treatment perspectives, Lancet, 2012, 379, 1045–1055

Zorrilla E.P., Luborsky L., McKay J.R., Rosenthal R., Houldin A., Tax A., et al., The relationship of depression and stressors to immunological assays: a meta-analytic review, Brain. Behav. Immun., 2001, 15, 199–226

Miller A.H., Maletic V., Raison C.L., Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression, Biol. Psychiatry, 2009, 65, 732–741

Sharief M.K., Hentges R., Association between tumor necrosis factoralpha and disease progression in patients with multiple sclerosis, N. Engl. J. Med., 1991, 325, 467–472

Blume J., Douglas S.D., Evans D.L., Immune suppression and immune activation in depression, Brain Behav. Immun., 2011, 25, 221–229

Zunszain P.A., Hepgul N., Pariante C.M., Inflammation and Depression, Curr. Top. Behav. Neurosci., 2012, [Epub ahead of print]

Lieberman A.P., Pitha P.M., Shin H.S., Shin M.L., Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus, Proc. Natl. Acad. Sci. USA, 1989, 86, 6348–6352

Rock R.B., Gekker G., Hu S., Sheng W.S., Cheeran M., Lokensgard J.R., et al., Role of microglia in central nervous system infections, Clin. Microbiol. Rev., 2004, 17, 942–964

Tsakiri N., Kimber I., Rothwell N.J., Pinteaux E., Differential effects of interleukin-1 alpha and beta on interleukin-6 and chemokine synthesis in neurones, Mol. Cell. Neurosci., 2008, 38, 259–265

Kaiya H., Uematsu M., Ofuji M., Nishida A., Takeuchi K., Nozaki M., et al., Elevated plasma prostaglandin E2 levels in schizophrenia, J. Neural. Transm., 1989, 77, 39–46

Dickerson F., Stallings C., Origoni A., Boronow J., Yolken R., C-reactive protein is associated with the severity of cognitive impairment but not of psychiatric symptoms in individuals with schizophrenia, Schizophr. Res., 2007, 93, 261–265

Theodoropoulou S., Spanakos G., Baxevanis C.N., Economou M., Gritzapis A.D., Papamichail M.P., et al., Cytokine serum levels, autologous mixed lymphocyte reaction and surface marker analysis in never medicated and chronically medicated schizophrenic patients, Schizophr. Res., 2001, 47, 13–25

Radewicz K., Garey L.J., Gentleman S.M., Reynolds R., Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics, J. Neuropathol. Exp. Neurol., 2000, 59, 137–150

Bayer T.A., Buslei R., Havas L., Falkai P., Evidence for activation of microglia in patients with psychiatric illnesses, Neurosci. Lett., 1999, 271, 126–128

van Berckel B.N., Bossong M.G., Boellaard R., Kloet R., Schuitemaker A., Caspers E., et al., Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study, Biol. Psychiatry, 2008, 64, 820–822

Doorduin J., de Vries E.F., Willemsen A.T., de Groot J.C., Dierckx R.A., Klein H.C., Neuroinflammation in schizophrenia-related psychosis: a PET study, J. Nucl. Med., 2009, 50, 1801–1807

Niitsu T., Shirayama Y., Matsuzawa D., Hasegawa T., Kanahara N., Hashimoto T., et al., Associations of serum brain-derived neurotrophic factor with cognitive impairments and negative symptoms in schizophrenia, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35, 1836–1840

Campbell S., Marriott M., Nahmias C., MacQueen G.M., Lower hippocampal volume in patients suffering from depression: a metaanalysis, Am. J. Psychiatry, 2004, 161, 598–607

Ziehn M.O., Avedisian A.A., Tiwari-Woodruff S., Voskuhl R.R., Hippocampal CA1 atrophy and synaptic loss during experimental autoimmune encephalomyelitis, EAE, Lab. Invest., 2010, 90, 774–786

Renno T., Krakowski M., Piccirillo C., Lin J.Y., Owens T., TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines, J. Immunol., 1995, 154, 944–953

Appenzeller S., Bertolo M.B., Costallat L.T., Cognitive impairment in rheumatoid arthritis, Methods Find. Exp. Clin. Pharmacol., 2004, 26, 339–343

El-Tantawy A.M., El-Sayed A.E., Kora B.A., Amin R.T., Psychiatric morbidity associated with some cytokines (IL-1beta, IL-12, IL-18 and TNF-alpha) among rheumatoid arthritis patients, Egypt. J. Immunol., 2008, 15, 1–11

Hider S.L., Tanveer W., Brownfield A., Mattey D.L., Packham J.C., Depression in RA patients treated with anti-TNF is common and under-recognized in the rheumatology clinic, Rheumatology (Oxford), 2009, 48, 1152–1154

Aloe L., Tuveri M.A., Levi-Montalcini R., Nerve growth factor and distribution of mast cells in the synovium of adult rats, Clin. Exp. Rheumatol., 1992, 10, 203–204

Stellwagen D., Malenka R.C., Synaptic scaling mediated by glial TNFalpha, Nature, 2006, 440, 1054–1059

Golan H., Levav T., Mendelsohn A., Huleihel M., Involvement of tumor necrosis factor alpha in hippocampal development and function, Cereb. Cortex, 2004, 14, 97–105

Fiore M., Probert L., Kollias G., Akassoglou K., Alleva E., Aloe L., Neurobehavioral alterations in developing transgenic mice expressing TNF-alpha in the brain, Brain Behav. Immun., 1996, 10, 126–138

Baune B.T., Wiede F., Braun A., Golledge J., Arolt V., Koerner H., Cognitive dysfunction in mice deficient for TNF- and its receptors, Am. J. Med. Genet. B Neuropsychiatr. Genet., 2008, 147B, 1056–1064

Stellwagen D., Beattie E.C., Seo J.Y., Malenka R.C., Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha, J. Neurosci., 2005, 25, 3219–3228

Moher D., Liberati A., Tetzlaff J., Altman D.G., Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement, J. Clin. Epidemiol., 2009, 62, 1006–1012

Medawar P.B., Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye, Br. J. Exp. Pathol., 1948, 29, 58–69

Barker C.F., Billingham R.E., Immunologically privileged sites, Adv. Immunol., 1977, 25, 1–54

Ransohoff R.M., Kivisakk P., Kidd G., Three or more routes for leukocyte migration into the central nervous system, Nat. Rev. Immunol., 2003, 3, 569–581

Streilein J.W., Immune privilege as the result of local tissue barriers and immunosuppressive microenvironments, Curr. Opin. Immunol., 1993, 5, 428–432

Tabakman R., Lecht S., Sephanova S., Arien-Zakay H., Lazarovici P., Interactions between the cells of the immune and nervous system: neurotrophins as neuroprotection mediators in CNS injury, Prog. Brain Res., 2004, 146, 387–401

Garay P.A., McAllister A.K., Novel roles for immune molecules in neural development: implications for neurodevelopmental disorders, Front. Synaptic Neurosci., 2010, 2, 136

Boulanger L.M., Shatz C.J., Immune signalling in neural development, synaptic plasticity and disease, Nat. Rev. Neurosci., 2004, 5, 521–531

Zlokovic B.V., The blood-brain barrier in health and chronic neurodegenerative disorders, Neuron, 2008, 57, 178–201

Banks W.A., Erickson M.A., The blood-brain barrier and immune function and dysfunction, Neurobiol. Dis., 2010, 37, 26–32

Engelhardt B., Regulation of immune cell entry into the central nervous system, Results Probl. Cell. Differ., 2006, 43, 259–280

Brietzke E., Stertz L., Fernandes B.S., Kauer-Sant’anna M., Mascarenhas M., Escosteguy Vargas A., et al., Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder, J. Affect. Disord., 2009, 116, 214–217

Maccioni R.B., Rojo L.E., Fernandez J.A., Kuljis R.O., The role of neuroimmunomodulation in Alzheimer’s disease, Ann. NY Acad. Sci., 2009, 1153, 240–246

Bossu P., Ciaramella A., Salani F., Bizzoni F., Varsi E., Di Iulio F., et al., Interleukin-18 produced by peripheral blood cells is increased in Alzheimer’s disease and correlates with cognitive impairment, Brain Behav. Immun., 2008, 22, 487–492

Cross A.H., Waubant E., MS and the B cell controversy, Biochim. Biophys. Acta, 2011, 1812, 231–238

Pan W., Kastin A.J., TNFalpha transport across the blood-brain barrier is abolished in receptor knockout mice, Exp. Neurol., 2002, 174, 193–200

Miric D., Katanic R., Kisic B., Zoric L., Miric B., Mitic R., et al., Oxidative stress and myeloperoxidase activity during bacterial meningitis: effects of febrile episodes and the BBB permeability, Clin. Biochem., 2010, 43, 246–252

Leib S.L., Tauber M.G., Pathogenesis of bacterial meningitis, Infect. Dis. Clin. North Am., 1999, 13, 527–548, v–vi

Nishioku T., Matsumoto J., Dohgu S., Sumi N., Miyao K., Takata F., et al., Tumor necrosis factor-alpha mediates the blood-brain barrier dysfunction induced by activated microglia in mouse brain microvascular endothelial cells, J. Pharmacol. Sci., 2010, 112, 251–254

Forster C., Burek M., Romero I.A., Weksler B., Couraud P.O., Drenckhahn D., Differential effects of hydrocortisone and TNFalpha on tight junction proteins in an in vitro model of the human blood-brain barrier, J. Physiol., 2008, 586, 1937–1949

Aslam M., Ahmad N., Srivastava R., Hemmer B., TNF-alpha induced NFkappaB signaling and p65 (RelA) overexpression repress Cldn5 promoter in mouse brain endothelial cells, Cytokine, 2012, 57, 269–275

Wake H., Moorhouse A.J., Nabekura J., Functions of microglia in the central nervous system — beyond the immune response, Neuron Glia Biol., 2012, 1–7

Butovsky O., Talpalar A.E., Ben-Yaakov K., Schwartz M., Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective, Mol. Cell. Neurosci., 2005, 29, 381–393

Morgan S.C., Taylor D.L., Pocock J.M., Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades, J. Neurochem., 2004, 90, 89–101

Medana I.M., Hunt N.H., Chaudhri G., Tumor necrosis factor-alpha expression in the brain during fatal murine cerebral malaria: evidence for production by microglia and astrocytes, Am. J. Pathol., 1997, 150, 1473–1486

Tracey K.J., Tumor necrosis factor (cachectin) in the biology of septic shock syndrome, Circ. Shock, 1991, 35, 123–128

Bielefeldt Ohmann H., Campos M., Snider M., Rapin N., Beskorwayne T., Popowych Y., et al., Effect of chronic administration of recombinant bovine tumor necrosis factor to cattle, Vet. Pathol., 1989, 26, 462–472

Probert L., Keffer J., Corbella P., Cazlaris H., Patsavoudi E., Stephens S., et al., Wasting, ischemia, and lymphoid abnormalities in mice expressing T cell-targeted human tumor necrosis factor transgenes, J. Immunol., 1993, 151, 1894–1906

Das S., Basu A., Inflammation: a new candidate in modulating adult neurogenesis, J. Neurosci. Res., 2008, 86, 1199–1208

Albensi B.C., Mattson M.P., Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity, Synapse, 2000, 35, 151–159

Horiuchi T., Mitoma H., Harashima S., Tsukamoto H., Shimoda T., Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents, Rheumatology (Oxford), 2010, 49, 1215–1228

Wajant H., Pfizenmaier K., Scheurich P., Tumor necrosis factor signaling, Cell. Death Differ., 2003, 10, 45–65

Black R.A., Rauch C.T., Kozlosky C.J., Peschon J.J., Slack J.L., Wolfson M.F., et al., A metalloproteinase disintegrin that releases tumournecrosis factor-alpha from cells, Nature, 1997, 385, 729–733

McCoy M.K., Tansey M.G., TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease, J. Neuroinflammation, 2008, 5, 45

Li J., Ramenaden E.R., Peng J., Koito H., Volpe J.J., Rosenberg P.A., Tumor necrosis factor alpha mediates lipopolysaccharide-induced microglial toxicity to developing oligodendrocytes when astrocytes are present, J. Neurosci., 2008, 28, 5321–5330

Kassiotis G., Kollias G., Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: implications for pathogenesis and therapy of autoimmune demyelination, J. Exp. Med., 2001, 193, 427–434

Grell M., Wajant H., Zimmermann G., Scheurich P., The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor, Proc. Natl. Acad. Sci. USA, 1998, 95, 570–575

Chen G., Goeddel D.V., TNF-R1 signaling: a beautiful pathway, Science, 2002, 296, 1634–1635

Hsu H., Xiong J., Goeddel D.V., The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation, Cell, 1995, 81, 495–504

Hsu H., Shu H.B., Pan M.G., Goeddel D.V., TRADD-TRAF2 and TRADDFADD interactions define two distinct TNF receptor 1 signal transduction pathways, Cell, 1996, 84, 299–308

Micheau O., Tschopp J., Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes, Cell, 2003, 114, 181–190

Shu H.B., Takeuchi M., Goeddel D.V., The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex, Proc. Natl. Acad. Sci USA, 1996, 93, 13973–13978

Winston B.W., Lange-Carter C.A., Gardner A.M., Johnson G.L., Riches D.W., Tumor necrosis factor alpha rapidly activates the mitogenactivated protein kinase (MAPK) cascade in a MAPK kinase kinasedependent, c-Raf-1-independent fashion in mouse macrophages, Proc. Natl. Acad. Sci. USA, 1995, 92, 1614–1618

Tobiume K., Matsuzawa A., Takahashi T., Nishitoh H., Morita K., Takeda K., et al., ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis, EMBO Rep., 2001, 2, 222–228

Ghosh S., Karin M., Missing pieces in the NF-kappaB puzzle, Cell, 2002, 109Suppl, S81–96

Camandola S., Mattson M.P., NF-kappa B as a therapeutic target in neurodegenerative diseases, Expert Opin. Ther. Targets, 2007, 11, 123–132

Rothe M., Pan M.G., Henzel W.J., Ayres T.M., Goeddel D.V., The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins, Cell, 1995, 83, 1243–1252

Marchetti L., Klein M., Schlett K., Pfizenmaier K., Eisel U.L., Tumor necrosis factor (TNF)-mediated neuroprotection against glutamateinduced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway, J. Biol. Chem., 2004, 279, 32869–32881

Bliss T.V., Collingridge G.L., A synaptic model of memory: long-term potentiation in the hippocampus, Nature, 1993, 361, 31–39

Wang G., Gilbert J., Man H.Y., AMPA receptor trafficking in homeostatic synaptic plasticity: functional molecules and signaling cascades, Neural Plast., 2012, 2012, 825364

Lipsky R.H., Xu K., Zhu D., Kelly C., Terhakopian A., Novelli A., et al., Nuclear factor kappaB is a critical determinant in N-methyl-Daspartate receptor-mediated neuroprotection, J. Neurochem., 2001, 78, 254–264

Beattie E.C., Stellwagen D., Morishita W., Bresnahan J.C., Ha B.K., Von Zastrow M., et al., Control of synaptic strength by glial TNFalpha, Science, 2002, 295, 2282–2285

Butler M.P., O’Connor J.J., Moynagh P.N., Dissection of tumor-necrosis factor-alpha inhibition of long-term potentiation (LTP) reveals a p38 mitogen-activated protein kinase-dependent mechanism which maps to early-but not late-phase LTP, Neuroscience, 2004, 124, 319–326

Bolshakov V.Y., Carboni L., Cobb M.H., Siegelbaum S.A., Belardetti F., Dual MAP kinase pathways mediate opposing forms of long-term plasticity at CA3-CA1 synapses, Nat. Neurosci., 2000, 3, 1107–1112

Wang Q., Walsh D.M., Rowan M.J., Selkoe D.J., Anwyl R., Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5, J. Neurosci., 2004, 24, 3370–3378

Ono K., Han J., The p38 signal transduction pathway: activation and function, Cell. Signal., 2000, 12, 1–13

Pickering M., Cumiskey D., O’Connor J.J., Actions of TNF-alpha on glutamatergic synaptic transmission in the central nervous system, Exp. Physiol., 2005, 90, 663–670

Hallbook F., Evolution of the vertebrate neurotrophin and Trk receptor gene families, Curr. Opin. Neurobiol., 1999, 9, 616–621

Huang E.J., Reichardt L.F., Neurotrophins: roles in neuronal development and function, Annu. Rev. Neurosci., 2001, 24, 677–736

Lewin G.R., Barde Y.A., Physiology of the neurotrophins, Annu. Rev. Neurosci., 1996, 19, 289–317

Sofroniew M.V., Howe C.L., Mobley W.C., Nerve growth factor signaling, neuroprotection, and neural repair, Annu. Rev. Neurosci., 2001, 24, 1217–1281

Henderson C.E., Role of neurotrophic factors in neuronal development, Curr. Opin. Neurobiol., 1996, 6, 64–70

Aloe L., Properzi F., Probert L., Akassoglou K., Kassiotis G., Micera A., et al., Learning abilities, NGF and BDNF brain levels in two lines of TNFalpha transgenic mice, one characterized by neurological disorders, the other phenotypically normal, Brain Res., 1999, 840, 125–137

Takei Y., Laskey R., Interpreting crosstalk between TNF-alpha and NGF: potential implications for disease, Trends Mol. Med., 2008, 14, 381–388

Takei Y., Laskey R., Intracellular and intercellular cross talk between NGF and TNF, Adv. Exp. Med. Biol., 2011, 691, 559–565

Saha R.N., Liu X., Pahan K., Up-regulation of BDNF in astrocytes by TNF-alpha: a case for the neuroprotective role of cytokine, J. Neuroimmune Pharmacol., 2006, 1, 212–222

Streit W.J., Mrak R.E., Griffin W.S., Microglia and neuroinflammation: a pathological perspective, J. Neuroinflammation, 2004, 1, 14

Khairova R.A., Machado-Vieira R., Du J., Manji H.K., A potential role for pro-inflammatory cytokines in regulating synaptic plasticity in major depressive disorder, Int. J. Neuropsychopharmacol., 2009, 12, 561–578

Potvin S., Stip E., Sepehry A.A., Gendron A., Bah R., Kouassi E., Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review, Biol. Psychiatry, 2008, 63, 801–808

Schmidt H.D., Shelton R.C., Duman R.S., Functional biomarkers of depression: diagnosis, treatment, and pathophysiology, Neuropsychopharmacology, 2011, 36, 2375–2394

Eyre H., Baune B.T., Neuroimmunological effects of physical exercise in depression, Brain Behav. Immun., 2012, 26, 251–266

Mirescu C., Gould E., Stress and adult neurogenesis, Hippocampus, 2006, 16, 233–238

Leonard B.E., Myint A., The psychoneuroimmunology of depression, Hum. Psychopharmacol., 2009, 24, 165–175

Brydon L., Harrison N.A., Walker C., Steptoe A., Critchley H.D., Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans, Biol. Psychiatry, 2008, 63, 1022–1029

Reichenberg A., Yirmiya R., Schuld A., Kraus T., Haack M., Morag A., et al., Cytokine-associated emotional and cognitive disturbances in humans, Arch. Gen. Psychiatry, 2001, 58, 445–452

Dantzer R., O’Connor J.C., Freund G.G., Johnson R.W., Kelley K.W., From inflammation to sickness and depression: when the immune system subjugates the brain, Nat. Rev. Neurosci., 2008, 9, 46–56

Dowlati Y., Herrmann N., Swardfager W., Liu H., Sham L., Reim E.K., et al., A meta-analysis of cytokines in major depression, Biol. Psychiatry, 2010, 67, 446–457

Howren M.B., Lamkin D.M., Suls J., Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis, Psychosom. Med., 2009, 71, 171–186

Bernardino L., Agasse F., Silva B., Ferreira R., Grade S., Malva J.O., Tumor necrosis factor-alpha modulates survival, proliferation, and neuronal differentiation in neonatal subventricular zone cell cultures, Stem Cells, 2008, 26, 2361–2371

Tilleux S., Hermans E., Neuroinflammation and regulation of glial glutamate uptake in neurological disorders, J. Neurosci. Res., 2007, 85, 2059–2070

Kaster M.P., Gadotti V.M., Calixto J.B., Santos A.R., Rodrigues A.L., Depressive-like behavior induced by tumor necrosis factor-alpha in mice, Neuropharmacology, 2012, 62, 419–426

You Z., Luo C., Zhang W., Chen Y., He J., Zhao Q., et al., Pro- and antiinflammatory cytokines expression in rat’s brain and spleen exposed to chronic mild stress: Involvement in depression, Behav. Brain Res., 225, 135–141

Kafitz K.W., Rose C.R., Konnerth A., Neurotrophin-evoked rapid excitation of central neurons, Prog. Brain Res., 2000, 128, 243–249

Gavillet M., Allaman I., Magistretti P.J., Modulation of astrocytic metabolic phenotype by proinflammatory cytokines, Glia, 2008, 56, 975–989

Hamidi M., Drevets W.C., Price J.L., Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes, Biol. Psychiatry, 2004, 55, 563–569

Ongur D., Drevets W.C., Price J.L., Glial reduction in the subgenual prefrontal cortex in mood disorders, Proc. Natl. Acad. Sci. USA, 1998, 95, 13290–13295

Steiner J., Bielau H., Brisch R., Danos P., Ullrich O., Mawrin C., et al., Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide, J. Psychiatr. Res., 2008, 42, 151–157

Arguello P.A., Gogos J.A., Cognition in mouse models of schizophrenia susceptibility genes, Schizophr. Bull., 2010, 36, 289–300

Drzyzga L., Obuchowicz E., Marcinowska A., Herman Z.S., Cytokines in schizophrenia and the effects of antipsychotic drugs, Brain Behav. Immun., 2006, 20, 532–545

Muller N., Riedel M., Gruber R., Ackenheil M., Schwarz M.J., The immune system and schizophrenia. An integrative view, Ann. NY Acad. Sci., 2000, 917, 456–467

Coelho F.M., Reis H.J., Nicolato R., Romano-Silva M.A., Teixeira M.M., Bauer M.E., et al., Increased serum levels of inflammatory markers in chronic institutionalized patients with schizophrenia, Neuroimmunomodulation, 2008, 15, 140–144

Boin F., Zanardini R., Pioli R., Altamura C.A., Maes M., Gennarelli M., Association between -G308A tumor necrosis factor alpha gene polymorphism and schizophrenia, Mol. Psychiatry, 2001, 6, 79–82

Schwab S.G., Mondabon S., Knapp M., Albus M., Hallmayer J., Borrmann-Hassenbach M., et al., Association of tumor necrosis factor alpha gene — G308A polymorphism with schizophrenia, Schizophr. Res., 2003, 65, 19–25

Wilson A.G., Symons J.A., McDowell T.L., McDevitt H.O., Duff G.W., Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation, Proc. Natl. Acad. Sci. USA, 1997, 94, 3195–3199

Shi J., Levinson D.F., Duan J., Sanders A.R., Zheng Y., Pe’er I., et al., Common variants on chromosome 6p22.1 are associated with schizophrenia, Nature, 2009, 460, 753–757

Ingason A., Rujescu D., Cichon S., Sigurdsson E., Sigmundsson T., Pietilainen O.P., et al., Copy number variations of chromosome 16p13.1 region associated with schizophrenia, Mol. Psychiatry, 2011, 16, 17–25

Stefansson H., Sigurdsson E., Steinthorsdottir V., Bjornsdottir S., Sigmundsson T., Ghosh S., et al., Neuregulin 1 and susceptibility to schizophrenia, Am. J. Hum. Genet., 2002, 71, 877–892

Li B., Woo R.S., Mei L., Malinow R., The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity, Neuron, 2007, 54, 583–597

Marballi K., Quinones M.P., Jimenez F., Escamilla M.A., Raventos H., Soto-Bernardini M.C., et al., In vivo and in vitro genetic evidence of involvement of neuregulin 1 in immune system dysregulation, J. Mol. Med. (Berl), 2010, 88, 1133–1141

Durany N., Michel T., Zochling R., Boissl K.W., Cruz-Sanchez F.F., Riederer P., et al., Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psychoses, Schizophr. Res., 2001, 52, 79–86

Green M.J., Matheson S.L., Shepherd A., Weickert C.S., Carr V.J., Brainderived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis, Mol. Psychiatry, 2011, 16, 960–972

Lassmann H., Bruck W., Lucchinetti C., Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy, Trends Mol. Med., 2001, 7, 115–121

Korner H., Sedgwick J.D., Tumour necrosis factor and lymphotoxin: molecular aspects and role in tissue-specific autoimmunity, Immunol. Cell Biol., 1996, 74, 465–472

Ruddle N.H., Bergman C.M., McGrath K.M., Lingenheld E.G., Grunnet M.L., Padula S.J., et al., An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis, J. Exp. Med., 1990, 172, 1193–1200

Korner H., Lemckert F.A., Chaudhri G., Etteldorf S., Sedgwick J.D., Tumor necrosis factor blockade in actively induced experimental autoimmune encephalomyelitis prevents clinical disease despite activated T cell infiltration to the central nervous system, Eur. J. Immunol., 1997, 27, 1973–1981

Selmaj K., Raine C.S., Cannella B., Brosnan C.F., Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions, J. Clin. Invest., 1991, 87, 949–954

Kuroda Y., Shimamoto Y., Human tumor necrosis factor-alpha augments experimental allergic encephalomyelitis in rats, J. Neuroimmunol., 1991, 34, 159–164

Barten D.M., Ruddle N.H., Vascular cell adhesion molecule-1 modulation by tumor necrosis factor in experimental allergic encephalomyelitis, J. Neuroimmunol., 1994, 51, 123–133

Korner H., Riminton D.S., Strickland D.H., Lemckert F.A., Pollard J.D., Sedgwick J.D., Critical points of tumor necrosis factor action in central nervous system autoimmune inflammation defined by gene targeting, J. Exp. Med., 1997, 186, 1585–1590

Suvannavejh G.C., Lee H.O., Padilla J., Dal Canto M.C., Barrett T.A., Miller S.D., Divergent roles for p55 and p75 tumor necrosis factor receptors in the pathogenesis of MOG(35–55)-induced experimental autoimmune encephalomyelitis, Cell. Immunol., 2000, 205, 24–33

D’Intino G., Paradisi M., Fernandez M., Giuliani A., Aloe L., Giardino L., et al., Cognitive deficit associated with cholinergic and nerve growth factor down-regulation in experimental allergic encephalomyelitis in rats, Proc. Natl. Acad. Sci. USA, 2005, 102, 3070–3075

Roosendaal S.D., Hulst H.E., Vrenken H., Feenstra H.E., Castelijns J.A., Pouwels P.J., et al., Structural and functional hippocampal changes in multiple sclerosis patients with intact memory function, Radiology, 2010, 255, 595–604

Anisman H., Merali Z., Hayley S., Neurotransmitter, peptide and cytokine processes in relation to depressive disorder: comorbidity between depression and neurodegenerative disorders, Prog. Neurobiol., 2008, 85, 1–74

Terrando N., Monaco C., Ma D., Foxwell B.M., Feldmann M., Maze M., Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline, Proc. Natl. Acad. Sci. USA, 2010, 107, 20518–20522

McAfoose J., Baune B.T., Evidence for a cytokine model of cognitive function, Neurosci. Biobehav. Rev., 2009, 33, 355–366

Peschon J.J., Torrance D.S., Stocking K.L., Glaccum M.B., Otten C., Willis C.R., et al., TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation, J. Immunol., 1998, 160, 943–952

Longhi L., Ortolano F., Zanier E.R., Perego C., Stocchetti N., De Simoni M.G., Effect of traumatic brain injury on cognitive function in mice lacking p55 and p75 tumor necrosis factor receptors, Acta Neurochir. Suppl., 2008, 102, 409–413

McAfoose J., Koerner H., Baune B.T., The effects of TNF deficiency on age-related cognitive performance, Psychoneuroendocrinology, 2009, 34, 615–619

Akassoglou K., Probert L., Kontogeorgos G., Kollias G., Astrocytespecific but not neuron-specific transmembrane TNF triggers inflammation and degeneration in the central nervous system of transgenic mice, J. Immunol., 1997, 158, 438–445

Dean B., Tawadros N., Scarr E., Gibbons A.S., Regionallyspecific changes in levels of tumour necrosis factor in the dorsolateral prefrontal cortex obtained postmortem from subjects with major depressive disorder, J. Affect. Disord., 2010, 120, 245–248

Grassi-Oliveira R., Brietzke E., Pezzi J.C., Lopes R.P., Teixeira A.L., Bauer M.E., Increased soluble tumor necrosis factor-alpha receptors in patients with major depressive disorder, Psychiatry Clin. Neurosci., 2009, 63, 202–208