Tumor vasculature remolding by thalidomide increases delivery and efficacy of cisplatin

Yanwei Shen1, Shuting Li1, Xin Wang1, Mengying Wang2, Qiang Tian1, Yang Jiao1, Jichang Wang3, Biyuan Wang1, Peijun Liu4
1Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
2Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an, China
3Department of Vascular Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
4Key Laboratory for Tumor Precision Medicine of Shaanxi Province First Affiliated Hospital of Xi'an Jiaotong University Xi'an China

Tóm tắt

Abstract Background A promising strategy to overcome the chemoresistance is the tumor blood vessel normalization, which restores the physiological perfusion and oxygenation of tumor vasculature. Thalidomide (Thal) has been shown to increase the anti-tumor effect of chemotherapy agents in solid tumors. However, it is not yet known whether the synergistic effect of Thal combined with other cytotoxic drugs is attributable to tumor vascular normalization. Methods We used two homograft mice models (4 T1 breast tumor model and CT26 colorectal tumor model) to investigate the effect of Thal on tumor growth, microvessel density, vascular physiology, vascular maturity and function, drug delivery and chemosensitivity. Immunofluorescence, immunohistochemistry and scanning electron microscopy were performed to determine the vessel changes. Protein array assay, qPCR and western blotting were used to detect the molecular mechanism by which Thal regulates tumor vascular. Results Here we report that Thal potently suppressed tumor growth, angiogenesis, hypoxia, and vascular permeability in animal models. Thal also induced a regular monolayer of endothelial cells in tumor vessels, inhibiting vascular instability, and normalized tumor vessels by increasing vascular maturity, pericyte coverage and endothelial junctions. The tumor vessel stabilization effect of Thal resulted in a decrease in tumor vessel tortuosity and leakage, and increased vessel thickness and tumor perfusion. Eventually, the delivery of cisplatin was highly enhanced through the normalized tumor vasculature, thus resulting in profound anti-tumor and anti-metastatic effects. Mechanistically, the effects of Thal on tumor vessels were caused in part by its capability to correct the imbalance between pro-angiogenic factors and anti-angiogenic factors. Conclusions Our findings provide direct evidence that Thal remodels the abnormal tumor vessel system into a normalized vasculature. Our results may lay solid foundation for the development of Thal as a novel candidate agent to maximize the therapeutic efficacy of chemotherapeutic drugs for solid tumors.

Từ khóa


Tài liệu tham khảo

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

Ronca R, Benkheil M, Mitola S, Struyf S, Liekens S. Tumor angiogenesis revisited: Regulators and clinical implications. Med Res Rev. 2017;37(6):1231–74.

Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.

Heath VL, Bicknell R. Anticancer strategies involving the vasculature. Nat Rev Clin Oncol. 2009;6(7):395–404.

Kim C, Yang H, Fukushima Y, Saw PE, Lee J, Park JS, et al. Vascular RhoJ is an effective and selective target for tumor angiogenesis and vascular disruption. Cancer Cell. 2014;25(1):102–17.

Harper J, Moses MA. Molecular regulation of tumor angiogenesis: mechanisms and therapeutic implications. Exs. 2006;96:223–68.

Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 2014;26(5):605–22.

Mazzieri R, Pucci F, Moi D, Zonari E, Ranghetti A, Berti A, et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell. 2011;19(4):512–26.

Shahneh FZ, Baradaran B, Zamani F, Aghebati-Maleki L. Tumor angiogenesis and anti-angiogenic therapies. Human antibodies. 2013;22(1–2):15–9.

Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 2009;15(3):232–9.

Sennino B, McDonald DM. Controlling escape from angiogenesis inhibitors. Nat Rev Cancer. 2012;12(10):699–709.

Ebos JM, Kerbel RS. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol. 2011;8(4):210–21.

Goel S, Wong AH, Jain RK. Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harbor perspectives in medicine. 2012;2(3):a006486.

De Bock K, Cauwenberghs S, Carmeliet P. Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications. Curr Opin Genet Dev. 2011;21(1):73–9.

Rapisarda A, Melillo G. Role of the hypoxic tumor microenvironment in the resistance to anti-angiogenic therapies. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy. 2009;12(3):74–80.

Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science (New York, NY). 2005;307(5706):58–62.

Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med. 2001;7(9):987–9.

Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell. 2004;6(6):553–63.

Kim SJ, Jung KH, Son MK, Park JH, Yan HH, Fang Z, et al. Tumor vessel normalization by the PI3K inhibitor HS-173 enhances drug delivery. Cancer Lett. 2017;403:339–53.

Chatterjee S, Wieczorek C, Schottle J, Siobal M, Hinze Y, Franz T, et al. Transient antiangiogenic treatment improves delivery of cytotoxic compounds and therapeutic outcome in lung cancer. Cancer Res. 2014;74(10):2816–24.

Bartlett JB, Dredge K, Dalgleish AG. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer. 2004;4(4):314–22.

Kreipe U. Abnormalities of internal organs in thalidomide embryopathy. A contribution to the determination of the sensitivity phase in thalidomide administration during early pregnancy. Archiv fur Kinderheilkunde. 1967;176(1):33–61.

Sheskin J. The treatment of lepra reaction in lepromatous leprosy. Fifteen years’ experience with thalidomide. Int J Dermatol. 1980;19(6):318–22.

Sheskin J. Thalidomode in the treatment of leper reactions. Clin Pharmacol Ther. 1965;6:303–6.

D'Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A. 1994;91(9):4082–5.

Hashimoto Y. Thalidomide as a multi-template for development of biologically active compounds. Arch Pharm. 2008;341(9):536–47.

Eleutherakis-Papaiakovou V, Bamias A, Dimopoulos MA. Thalidomide in cancer medicine. Annals of oncology : official journal of the European Society for Medical Oncology. 2004;15(8):1151–60.

Wang X, Shen Y, Li S, Lv M, Zhang X, Yang J, et al. Importance of the interaction between immune cells and tumor vasculature mediated by thalidomide in cancer treatment (review). Int J Mol Med. 2016;38(4):1021–9.

de Souza CM, Araujo e Silva AC, de Jesus Ferraciolli C, Moreira GV, Campos LC, dos Reis DC, et al. Combination therapy with carboplatin and thalidomide suppresses tumor growth and metastasis in 4T1 murine breast cancer model. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2014;68(1):51–7.

Lv M, Li S, Luo C, Zhang X, Shen Y, Sui YX, et al. Angiomotin promotes renal epithelial and carcinoma cell proliferation by retaining the nuclear YAP. Oncotarget. 2016;7(11):12393–403.

Miles AA, Miles EM. Vascular reactions to histamine, histamine-liberator and leukotaxine in the skin of Guinea-pigs. J Physiol. 1952;118(2):228–57.

Carrer A, Moimas S, Zacchigna S, Pattarini L, Zentilin L, Ruozi G, et al. Neuropilin-1 identifies a subset of bone marrow Gr1- monocytes that can induce tumor vessel normalization and inhibit tumor growth. Cancer Res. 2012;72(24):6371–81.

Chen ZL, Yang J, Shen YW, Li ST, Wang X, Lv M, et al. AmotP130 regulates rho GTPase and decreases breast cancer cell mobility. J Cell Mol Med. 2018;22(4):2390–403.

Francescone R, Ngernyuang N, Yan W, Bentley B, Shao R. Tumor-derived mural-like cells coordinate with endothelial cells: role of YKL-40 in mural cell-mediated angiogenesis. Oncogene. 2014;33(16):2110–22.

Maione F, Giraudo E. Tumor angiogenesis: methods to analyze tumor vasculature and vessel normalization in mouse models of cancer. Methods Mol Biol. 2015;1267:349–65.

Park JS, Kim IK, Han S, Park I, Kim C, Bae J, et al. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell. 2016;30(6):953–67.

Li W, Quan YY, Li Y, Lu L, Cui M. Monitoring of tumor vascular normalization: the key points from basic research to clinical application. Cancer Manag Res. 2018;10:4163–72.

Saggar JK, Fung AS, Patel KJ, Tannock IF. Use of molecular biomarkers to quantify the spatial distribution of effects of anticancer drugs in solid tumors. Mol Cancer Ther. 2013;12(4):542–52.

Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 2011;10(6):417–27.

Maes H, Kuchnio A, Peric A, Moens S, Nys K, De Bock K, et al. Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell. 2014;26(2):190–206.

Zhang H, Ren Y, Tang X, Wang K, Liu Y, Zhang L, et al. Vascular normalization induced by sinomenine hydrochloride results in suppressed mammary tumor growth and metastasis. Sci Rep. 2015;5:8888.

Wang JC, Li GY, Wang B, Han SX, Sun X, Jiang YN, et al. Metformin inhibits metastatic breast cancer progression and improves chemosensitivity by inducing vessel normalization via PDGF-B downregulation. Journal of experimental & clinical cancer research : CR. 2019;38(1):235.

Fuxe J, Tabruyn S, Colton K, Zaid H, Adams A, Baluk P, et al. Pericyte requirement for anti-leak action of angiopoietin-1 and vascular remodeling in sustained inflammation. Am J Pathol. 2011;178(6):2897–909.

Koh GY. Orchestral actions of angiopoietin-1 in vascular regeneration. Trends Mol Med. 2013;19(1):31–9.

Lebrin F, Srun S, Raymond K, Martin S, van den Brink S, Freitas C, et al. Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nat Med. 2010;16(4):420–8.

Enge M, Bjarnegard M, Gerhardt H, Gustafsson E, Kalen M, Asker N, et al. Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J. 2002;21(16):4307–16.

Hayashi Y, Yokota A, Harada H, Huang G. Hypoxia/pseudohypoxia-mediated activation of hypoxia-inducible factor-1alpha in cancer. Cancer Sci. 2019;110(5):1510–7.

Viallard C, Larrivee B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017;20(4):409–26.

Shortt J, Hsu AK, Johnstone RW. Thalidomide-analogue biology: immunological, molecular and epigenetic targets in cancer therapy. Oncogene. 2013;32(36):4191–202.

He GL, Xu DR, Zou WY, He SZ, Li J. The VAD Scheme versus Thalidomide plus VAD for Reduction of Vascular Endothelial Growth Factor in Multiple Myeloma: A Meta-Analysis. Biomed Res Int. 2018;2018:3936706.

Agrawal V, Maharjan S, Kim K, Kim NJ, Son J, Lee K, et al. Direct endothelial junction restoration results in significant tumor vascular normalization and metastasis inhibition in mice. Oncotarget. 2014;5(9):2761–77.

Martin JD, Seano G, Jain RK. Normalizing function of tumor vessels: Progress, opportunities, and challenges. Annu Rev Physiol. 2019;81:505–34.

Eklund L, Kangas J, Saharinen P. Angiopoietin-Tie signalling in the cardiovascular and lymphatic systems. Clin Sci (London, England : 1979). 2017;131(1):87–103.

Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193–215.

Sherbet GV. Therapeutic potential of thalidomide and its analogues in the treatment of Cancer. Anticancer Res. 2015;35(11):5767–72.

Chen L, Qiu X, Wang R, Xie X. The efficacy and safety of docetaxel plus thalidomide vs docetaxel alone in patients with androgen-independent prostate cancer: a systematic review Scientific reports. Sci Rep. 2014;4:4818.

Cao DD, Xu HL, Liu L, Zheng YF, Gao SF, Xu XM, et al. Thalidomide combined with transcatheter artierial chemoembolzation for primary hepatocellular carcinoma: a systematic review and meta-analysis. Oncotarget. 2017;8(27):44976–93.

Li L, Huang XE. Thalidomide combined with chemotherapy in treating patients with advanced lung Cancer. Asian Pacific journal of cancer prevention: APJCP. 2016;17(5):2583–5.