Tumor microvasculature as a barrier to antitumor immunity

Springer Science and Business Media LLC - Tập 52 - Trang 670-679 - 2003
Qing Chen1, Wan-Chao Wang1, Sharon S. Evans1
1Department of Immunology, Roswell Park Cancer Institute, Buffalo, USA

Tài liệu tham khảo

Armstrong TD, Jaffee EM (2002) Cytokine modified tumor vaccines. Surg Oncol Clin N Am 11:681–696 Davis ID, Jefford M, Parente P, Cebon J (2003) Rational approaches to human cancer immunotherapy. J Leukoc Biol 73, 3–29 Mocellin S, Rossi CR, Lise M, Marincola FM (2002) Adjuvant immunotherapy for solid tumors: from promise to clinical application. Cancer Immunol Immunother 51:583–595 Johnson SK, Kerr KM, Chapman AD, Kennedy MM, King G, Cockburn JS, Jeffrey RR (2000) Immune cell infiltrates and prognosis in primary carcinoma of the lung. Lung Cancer 27:27–35 Lee TK, Horner RD, Silverman JF, Chen YH, Jenny C, Scarantino CW (1989) Morphometric and morphologic evaluations in stage III non-small cell lung cancers: prognostic significance of quantitative assessment of infiltrating lymphoid cells. Cancer 63:309–316 Tosi P, Sforza V, Santopietro R, Lio R, Gotti, G, Paladini, P, Cevenini, G, Barbini, P. (1992) Bronchiolo-alveolar carcinoma: an analysis of survival predictors. Eur J Cancer 28A, 1365–70 Clark WH Jr, Elder DE, Guerry DT, Braitman LE, Trock BJ, Schultz D, Synnestvedt M, Halpern AC (1989) Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst 81:1893–1904 Elder DE, Guerry DT, VanHorn M, Hurwitz S, Zehngebot L, Goldman LI, LaRossa D, Hamilton R, Bondi EE, Clark WH Jr (1985) The role of lymph node dissection for clinical stage I malignant melanoma of intermediate thickness (1.51–3.99 mm). Cancer 56:413–418 Poppema S, Brocker EB, de Leij L, Terbrack D, Visscher T, Ter Haar A, Macher E, The TH, Sorg C (1983) In situ analysis of the mononuclear cell infiltrate in primary malignant melanoma of the skin. Clin Exp Immunol 51:77–82 Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659 Watanabe S, Sato Y, Kodama T, Shimosato Y (1983) Immunohistochemical study with monoclonal antibodies on immune response in human lung cancers. Cancer Res 43:5883–5889 An T, Sood U, Pietruk T, Cummings G, Hashimoto K, Crissman JD (1987) In situ quantitation of inflammatory mononuclear cells in ductal infiltrating breast carcinoma: relation to prognostic parameters. Am J Pathol 128:52–60 Ioachim HL (1976) The stromal reaction of tumors: an expression of immune surveillance. J Natl Cancer Inst 57:465 Freemont AJ (1982) The small blood vessels in areas of lymphocytic infiltration around malignant neoplasms. Br J Cancer 46:283–288 Aaltomaa S, Lipponen P, Eskelinen M, Kosma VM, Marin S, Alhava E, Syrjanen K (1992) Lymphocyte infiltrates as a prognostic variable in female breast cancer. Eur J Cancer 28A:859–864 Lwin KY, Zuccarini O, Sloane JP, Beverley PC (1985) An immunohistological study of leukocyte localization in benign and malignant breast tissue. Int J Cancer 36:433–438 Adams WJ, Morris DL (1997) Pilot study--cimetidine enhances lymphocyte infiltration of human colorectal carcinoma: results of a small randomized control trial. Cancer 80:15–21 AD E (1980) Assessment of immune responses to tumors using cryostat sections of bronchogenic carcinoma. Cancer Res 40:3598–3601 Ben-Hur H, Kossoy G, Schneider DF, Zandbank J, Zusman I (2002) Response of the immune system of mammary tumor-bearing rats to cyclophosphamide and soluble low-molecular mass tumor-associated antigens: the spleen and lymph nodes. Int J Mol Med 9:311–316 Menard S, Tomasic G, Casalini P, Balsari A, Pilotti S, Cascinelli N, Salvadori B, Colnaghi MI, Rilke F (1997) Lymphoid infiltration as a prognostic variable for early-onset breast carcinomas. Clin Cancer Res 3:817–819 Jass JR, Atkin WS, Cuzick J, Bussey HJ, Morson BC, Northover JM, Todd IP (1986) The grading of rectal cancer: historical perspectives and a multivariate analysis of 447 cases. Histopathology 10:437–459 Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H, Matsushima K (2000) Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 6:3282–3289 Nakamura Y, Yasuoka H, Tsujimoto M, Yang Q, Imabun S, Nakahara M, Nakao K, Nakamura M, Mori I, Kakudo K (2003) Prognostic significance of vascular endothelial growth factor D in breast carcinoma with long-term follow-up. Clin Cancer Res 9:716–721 Toomey D, Harmey J, Condron C, Kay E, Bouchier-Hayes D (1999) Phenotyping of immune cell infiltrates in breast and colorectal tumours. Immunol Invest 28:29–41 Hishii M, Nitta T, Ishida H, Ebato M, Kurosu A, Yagita H, Sato K, Okumura K (1995) Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery 37:1160–1167 Harmey JH, Dimitriadis E, Kay E, Redmond HP, Bouchier-Hayes D (1998) Regulation of macrophage production of vascular endothelial growth factor (VEGF) by hypoxia and transforming growth factor beta-1. Ann Surg Oncol 5:271–278 Lewis CE, Leek R, Harris A, McGee JO (1995) Cytokine regulation of angiogenesis in breast cancer: the role of tumor-associated macrophages. J Leukoc Biol 57:747–751 Mortarini R, Borri A, Tragni G, Bersani I, Vegetti C, Bajetta E, Pilotti S, Cerundolo V, Anichini A (2000) Peripheral burst of tumor-specific cytotoxic T lymphocytes and infiltration of metastatic lesions by memory CD8+ T cells in melanoma patients receiving interleukin 12. Cancer Res 60:3559–3568 Piali L, Fichtel A, Terpe HJ, Imhof BA, Gisler RH (1995) Endothelial vascular cell adhesion molecule 1 expression is suppressed by melanoma and carcinoma. J Exp Med 181:811–816 Mackensen A, Carcelain G, Viel S, Raynal MC, Michalaki H, Triebel F, Bosq J, Hercend T (1994) Direct evidence to support the immunosurveillance concept in a human regressive melanoma. J Clin Invest 93:1397–1402 McGovern VJ (1976) Malignant melanoma, clinical and histological diagnosis. Wiley, New York Szekeres L, Daroczy J (1981) Electron microscopic investigation on the local cellular reaction to primary malignant melanoma. Dermatologica 163:137–144 Dvorak AM, Mihm MC Jr, Osage JE, Dvorak HF (1980) Melanoma: an ultrastructural study of the host inflammatory and vascular responses. J Invest Dermatol 75:388–393 Girard JP, Springer TA (1995) High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol Today 16:449–457 Butcher EC, Williams M, Youngman K, Rott L, Briskin M (1999) Lymphocyte trafficking and regional immunity. Adv Immunol 72:209–253 Kansas GS (1996) Selectins and their ligands: current concepts and controversies. Blood 88:3259–3287 Rosen SD, Hwang ST, Giblin PA, Singer MS (1997) High-endothelial-venule ligands for L-selectin: identification and functions. Biochem Soc Trans 25:428–433 Butcher EC, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272:60–66 Pober JS, Cotran RS (1990) Cytokines and endothelial cell biology. Physiol Rev 70:427–451 Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314 Pober JS (2002) Endothelial activation: intracellular signaling pathways. Arthritis Res 4[Suppl 3]:S109–S116 Baggiolini M (1998) Chemokines and leukocyte traffic. Nature 392:565–568 Ding Z, Xiong K, Issekutz TB (2001) Chemokines stimulate human T lymphocyte transendothelial migration to utilize VLA-4 in addition to LFA-1. J Leukoc Biol 69:458–466 Kunkel EJ, Butcher EC (2002) Chemokines and the tissue-specific migration of lymphocytes. Immunity 16:1–4 Sallusto F, Langenkamp A, Geginat J, Lanzavecchia A (2000) Functional subsets of memory T cells identified by CCR7 expression. Curr Top Microbiol Immunol 251:167–171 Sallusto F, Lanzavecchia A (2000) Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression. Immunol Rev 177:134–140 Shah A, Unger E, Bain MD, Bruce R, Bodkin J, Ginnetti J, Wang WC, Seon B, Stewart CC, Evans SS (2002) Cytokine and adhesion molecule expression in primary human endothelial cells stimulated with fever-range hyperthermia. Int J Hyperthermia 18:534–551 Piali L, Albelda SM, Baldwin HS, Hammel P, Gisler RH, Imhof BA (1993) Murine platelet endothelial cell adhesion molecule (PECAM-1)/CD31 modulates beta 2 integrins on lymphokine-activated killer cells. Eur J Immunol 23:2464–2471 Melder RJ, Koenig GC, Witwer BP, Safabakhsh N, Munn LL, Jain RK (1996) During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat Med 2:992–997 Jain RK, Koenig GC, Dellian M, Fukumura D, Munn LL, Melder RJ (1996) Leukocyte-endothelial adhesion and angiogenesis in tumors. Cancer Metastasis Rev 15:195–204 Onrust SV, Hartl PM, Rosen SD, Hanahan D (1996) Modulation of L-selectin ligand expression during an immune response accompanying tumorigenesis in transgenic mice. J Clin Invest 97:54–64 Ganss R, Hanahan D (1998) Tumor microenvironment can restrict the effectiveness of activated antitumor lymphocytes. Cancer Res 58:4673–4681 Chin YH, Ye MW, Cai JP, Xu XM (1996) Differential regulation of tissue-specific lymph node high endothelial venule cell adhesion molecules by tumour necrosis factor and transforming growth factor-beta 1. Immunology 87:559–565 Ganss R, Ryschich E, Klar E, Arnold B, Hammerling GJ (2002) Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer Res 62:1462–1470 Carlos TM (2001) Leukocyte recruitment at sites of tumor: dissonant orchestration. J Leukoc Biol 70:171–184 Wu NZ, Klitzman B, Dodge R, Dewhirst MW (1992) Diminished leukocyte-endothelium interaction in tumor microvessels. Cancer Res 52:4265–4268 Chen Q, Unger EL, Passanese J, Bangia P, Pritchard M, Wang WC Repasky E, Evans SS (2003) Fever-range thermal stress augments lymphocyte-endothelial adhesion in the tumor microvasculature. 94th annual meeting of American Association for Cancer Research Ryschich E, Schmidt J, Hammerling GJ, Klar E, Ganss R (2002) Transformation of the microvascular system during multistage tumorigenesis. Int J Cancer 97:719–725 Schmidt J, Ryschich E, Maksan SM, Werner J, Gebhard MM, Herfarth C, Klar E (1999) Reduced basal and stimulated leukocyte adherence in tumor endothelium of experimental pancreatic cancer. Int J Pancreatol 26, 173–179 Irjala H, Salmi M, Alanen K, Grenman R, Jalkanen S (2001) Vascular adhesion protein 1 mediates binding of immunotherapeutic effector cells to tumor endothelium. J Immunol 166:6937–6943 Salmi M, Grenman R, Grenman S, Nordman E, Jalkanen S (1995) Tumor endothelium selectively supports binding of IL-2-propagated tumor-infiltrating lymphocytes. J Immunol 154:6002–6012 Nelson H, Ramsey PS, Donohue JH, Wold LE (1994) Cell adhesion molecule expression within the microvasculature of human colorectal malignancies. Clin Immunol Immunopathol 72:129–136 Kunz M, Toksoy A, Goebeler M, Engelhardt E, Brocker E, Gillitzer R (1999) Strong expression of the lymphoattractant C-X-C chemokine Mig is associated with heavy infiltration of T cells in human malignant melanoma. J Pathol 189:552–558 Griffioen AW, Damen CA, Martinotti S, Blijham GH, Groenewegen G (1996) Endothelial intercellular adhesion molecule-1 expression is suppressed in human malignancies: the role of angiogenic factors. Cancer Res 56:1111–1117 Griffioen AW, Damen CA, Blijham GH, Groenewegen G (1996) Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood 88:667–673 Griffioen AW, Tromp SC, Hillen HF (1998) Angiogenesis modulates the tumour immune response. Int J Exp Pathol 79:363–368 Tromp SC, oude Egbrink MG, Dings RP, van Velzen S, Slaaf DW, Hillen HF, Tangelder GJ, Reneman RS, Griffioen AW (2000) Tumor angiogenesis factors reduce leukocyte adhesion in vivo. Int Immunol 12:671–676 Chin YH, Cai JP, Xu XM (1992) Transforming growth factor-beta 1 and IL-4 regulate the adhesiveness of Peyer's patch high endothelial venule cells for lymphocytes. J Immunol 148:1106–1112 Gamble JR, Vadas MA (1988) Endothelial adhesiveness for blood neutrophils is inhibited by transforming growth factor-beta. Science 242:97–99 Berger R, Albelda SM, Berd D, Ioffreda M, Whitaker D, Murphy GF (1993) Expression of platelet-endothelial cell adhesion molecule-1 (PECAM-1) during melanoma-induced angiogenesis in vivo. J Cutan Pathol 20:399–406 Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T (1995) Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. FASEB J 9:899–909 Fukumura D, Salehi HA, Witwer B, Tuma RF, Melder RJ, Jain RK (1995) Tumor necrosis factor alpha-induced leukocyte adhesion in normal and tumor vessels: effect of tumor type, transplantation site, and host strain. Cancer Res 55:4824–4829 Nooijen PT, Eggermont AM, Verbeek MM, Schalkwijk L, Buurman WA, de Waal RM, Ruiter DJ (1996) Transient induction of E-selectin expression following TNF alpha-based isolated limb perfusion in melanoma and sarcoma patients is not tumor specific. J Immunother Emphasis Tumor Immunol 19:33–44 Renard N, Lienard D, Lespagnard L, Eggermont A, Heimann R, Lejeune F (1994) Early endothelium activation and polymorphonuclear cell invasion precede specific necrosis of human melanoma and sarcoma treated by intravascular high-dose tumour necrosis factor alpha (rTNF alpha). Int J Cancer 57:656–663 Fujiwara H, Hamaoka T (2001) Coordination of chemokine and adhesion systems in intratumoral T cell migration responsible for the induction of tumor regression. Int Immunopharmacol 1:613–623 Ogawa M, Tsutsui T, Zou JP, Mu J, Wijesuriya R, Yu WG, Herrmann S, Kubo T, Fujiwara H, Hamaoka T (1997) Enhanced induction of very late antigen 4/lymphocyte function-associated antigen 1-dependent T-cell migration to tumor sites following administration of interleukin 12. Cancer Res 57:2216–2222 Ogawa M, Yu WG, Umehara K, Iwasaki M, Wijesuriya R, Tsujimura T, Kubo T, Fujiwara H, Hamaoka T (1998) Multiple roles of interferon-gamma in the mediation of interleukin 12–induced tumor regression. Cancer Res 58:2426–2432 Ogawa M, Umehara K, Yu WG, Uekusa Y, Nakajima C, Tsujimura T, Kubo T, Fujiwara H, Hamaoka T (1999) A critical role for a peritumoral stromal reaction in the induction of T-cell migration responsible for interleukin-12-induced tumor regression. Cancer Res 59:1531–1538 Nakajima C, Uekusa Y, Iwasaki M, Yamaguchi N, Mukai T, Gao P, Tomura M, Ono S, Tsujimura T, Fujiwara H, Hamaoka T (2001) A role of interferon-gamma (IFN-gamma) in tumor immunity: T cells with the capacity to reject tumor cells are generated but fail to migrate to tumor sites in IFN-gamma-deficient mice. Cancer Res 61:3399–3405 Hess SD, Egilmez NK, Bailey N, Anderson TM, Mathiowitz E, Bernstein SH, Bankert RB (2003) Human CD4+ T cells present within the microenvironment of human lung tumors are mobilized by the local and sustained release of IL-12 to kill tumors in situ by indirect effects of IFN-gamma. J Immunol 170:400–412 Wang JM, Deng X, Gong W, Su S (1998) Chemokines and their role in tumor growth and metastasis. J Immunol Methods 220:1–17 Arenberg DA, Zlotnick A, Strom SR, Burdick MD, Strieter RM (2001) The murine CC chemokine, 6C-kine, inhibits tumor growth and angiogenesis in a human lung cancer SCID mouse model. Cancer Immunol Immunother 49:587–592 Sharma S, Yang SC, Hillinger S, Zhu LX, Huang M, Batra RK, Lin JF, Burdick MD, Strieter RM, Dubinett SM (2003) SLC/CCL21-mediated anti-tumor responses require IFN-gamma, MIG/CXCL9 and IP-10/CXCL10. Mol Cancer 2:22 White ES, Strieter RM, Arenberg DA (2002) Chemokines as therapeutic targets in non-small cell lung cancer. Curr Med Chem Anti-Cancer Agents 2:403–417 Homey B, Muller A, Zlotnik A (2002) Chemokines: agents for the immunotherapy of cancer? Nat Rev Immunol 2:175–184 Sgadari C, Farber JM, Angiolillo AL, Liao F, Teruya-Feldstein J, Burd PR, Yao L, Gupta G, Kanegane C, Tosato G (1997) Mig, the monokine induced by interferon-gamma, promotes tumor necrosis in vivo. Blood 89:2635–2643 Vicari AP, Ait-Yahia S, Chemin K, Mueller A, Zlotnik A, Caux C (2000) Antitumor effects of the mouse chemokine 6Ckine/SLC through angiostatic and immunological mechanisms. J Immunol 165:1992–2000 Sharma S, Stolina M, Luo J, Strieter RM, Burdick M, Zhu LX, Batra RK, Dubinett SM(2000) Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J Immunol 164, 4558–4563 Addison CL, Arenberg DA, Morris SB, Xue YY, Burdick MD, Mulligan MS, Iannettoni MD, Strieter RM (2000) The CXC chemokine, monokine induced by interferon-gamma, inhibits non- small cell lung carcinoma tumor growth and metastasis. Hum Gene Ther 11:247–261 Luther SA, Lopez T, Bai W, Hanahan D, Cyster JG (2000) BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity 12:471–481 Fan L, Reilly CR, Luo Y, Dorf ME, Lo D (2000) Cutting edge: ectopic expression of the chemokine TCA4/SLC is sufficient to trigger lymphoid neogenesis. J Immunol 164:3955–3959 Gollnick SO, Evans SS, Baumann H, Owczarczak B, Maier P, Vaughan L Wang WC, Unger EL, Henderson BW (2003) The role of cytokines in photodynamic therapy (PDT) induced local and systemic inflammation (in press). Hanahan D (1985) Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315:115–122 Cao ZA, Daniel D, Hanahan D (2002) Sub-lethal radiation enhances anti-tumor immunotherapy in a transgenic mouse model of pancreatic cancer. BMC Cancer 2:11 Ganss R, Limmer A, Sacher T, Arnold B, Hammerling GJ (1999) Autoaggression and tumor rejection: it takes more than self-specific T-cell activation. Immunol Rev 169:263–272 Burd R, Dziedzic TS, Xu Y, Caligiuri MA, Subjeck JR, Repasky EA (1998) Tumor cell apoptosis, lymphocyte recruitment and tumor vascular changes are induced by low temperature, long duration (fever-like) whole body hyperthermia. J Cell Physiol 177:137–147 Di YP, Repasky EA, Subjeck JR (1997) Distribution of HSP70, protein kinase C, and spectrin is altered in lymphocytes during a fever-like hyperthermia exposure. J Cell Physiol 172:44–54 Ostberg JR, Repasky EA (2000) Use of mild, whole body hyperthermia in cancer therapy. Immunol Invest 29:139–142 Repasky EA, Tims E, Pritchard M, Burd R (1999) Characterization of mild whole-body hyperthermia protocols using human breast, ovarian, and colon tumors grown in severe combined immunodeficient mice. Infect Dis Obstet Gynecol 7:91–97 Wang XY, Kazim L, Repasky EA, Subjeck JR (2001) Characterization of heat shock protein 110 and glucose-regulated protein 170 as cancer vaccines and the effect of fever-range hyperthermia on vaccine activity. J Immunol 166:490–497 Evans SS, Wang WC, Bain MD, Burd R, Ostberg JR, Repasky EA (2001) Fever-range hyperthermia dynamically regulates lymphocyte delivery to high endothelial venules. Blood 97:2727–2733 Kong G, Braun RD, Dewhirst MW (2000) Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res 60:4440–4445 Kong G, Braun RD, Dewhirst MW (2001) Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res 61:3027–3032 Moroz P, Jones SK, Gray BN (2001) Status of hyperthermia in the treatment of advanced liver cancer. J Surg Oncol 77:259–269 Fajardo LF, Prionas SD (1994) Endothelial cells and hyperthermia. Int J Hyperthermia 10:347–353 Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3:487–497 Wang WC, Goldman LM, Schleider DM, Appenheimer MM, Subjeck JR, Repasky EA, Evans SS (1998) Fever-range hyperthermia enhances L-selectin-dependent adhesion of lymphocytes to vascular endothelium. J Immunol 160:961–969 Evans SS, Schleider DM, Bowman LA, Francis ML, Kansas GS, Black JD (1999) Dynamic association of L-selectin with the lymphocyte cytoskeletal matrix. J Immunol 162:3615–3624 Evans SS, Bain MD, Wang WC (2000) Fever-range hyperthermia stimulates alpha4beta7 integrin-dependent lymphocyte-endothelial adhesion. Int J Hyperthermia 16:45–59 Evans SS, Frey M, Schleider DM, Bruce R, WANG WC, Repasky E, Appenheimer MM (1998) Regulation of leukocyte-endothelail cell interactions in tumor immunity. In: Croce AM (ed) The biology of tumors, Plenum Press, New York, pp 273–286 Kraybill WG, Olenki T, Evans SS, Ostberg JR, O'Leary KA, Gibbs JF, Repasky EA (2002) A phase I study of fever-range whole body hyperthermia (FR-WBH) in patients with advanced solid tumours: correlation with mouse models. Int J Hyperthermia 18:253–266 Ostberg JR, Repasky EA (2000) Comparison of the effects of two different whole body hyperthermia protocols on the distribution of murine leukocyte populations. Int J Hyperthermia 16:29–43 Demaria S, Volm MD, Shapiro RL, Yee HT, Oratz R, Formenti SC, Muggia F, Symmans WF (2001) Development of tumor-infiltrating lymphocytes in breast cancer after neoadjuvant paclitaxel chemotherapy. Clin Cancer Res 7:3025–3030 Parshad R, Kapoor S, Gupta SD, Kumar A, Chattopadhyaya TK (2002) Does famotidine enhance tumor infiltrating lymphocytes in breast cancer? Results of a randomized prospective pilot study. Acta Oncol 41:362–365