Tumor cell-expressed IL-15Rα drives antagonistic effects on the progression and immune control of gastric cancer and is epigenetically regulated in EBV-positive gastric cancer
Tóm tắt
Epstein-Barr virus associated gastric cancer (EBVaGC) often exhibits a favorable prognosis that correlates with highly methylated viral and host genes and significant immune cell infiltration compared to EBV-negative gastric cancers (GCs). Previously, it has been reported that expression of the IL-15 receptor α (IL-15Rα) is down-regulated in EBVaGC via promoter hypermethylation. In the present study, we offer a novel explanation for this puzzle by associating IL-15Rα expression with infiltration of lymphocytes in GC lesions. We investigated the expression of IL-15Rα by RT-PCR, Western-blotting and immunohistochemistry in GC cell lines and primary tissues, respectively. IL-15Rα promoter methylation was analyzed using genomic methylation sequencing. The growth behavior of GC cells was analyzed using MTT, flow cytometry, colony formation, transwell invasion and scratch wound healing assays. Demethylation of IL-15Rα was carried out using 5-Aza-CdR, and rIL-15 was added to evaluate growth promoting effects of the IL-15/IL-15Rα complex. Human peripheral blood mononuclear cells (PBMCs) were co-cultured with GC cells with/without the addition of rIL-15, after which the phosphorylation of STAT5 in PBMCs was evaluated using flow cytometry to estimate the activation of these immune cells through IL-15 binding to IL-2Rβ/γ receptors by in trans presentation. We found that EBV-positive GC cells (AE) expressed IL-15Rα at a significantly lower level than EBV-negative GC cells (AGS) due to promoter hypermethylation. In the absence of immune cells, IL-15Rα on the cancer cell surface induced a malignant phenotype, including augmented cell growth, migration and invasion, and decreased apoptosis. 5-Aza-CdR reverted AE cells to a more malignant phenotype similar to AGS cells, which may be attributed to activation of the STAT1, STAT3 and ERK1/2 pathways. However, when PBMCs were added to the GC cell cultures, these immune cells were activated as detected by increased pSTAT5 levels. Also, more GC cells underwent apoptosis. These effects were enhanced by the addition of rIL-15 and, subsequently, confirmed in EBVaGC patient samples exhibiting increased expression of T cell surface markers and activation of immune co-stimulating pathways. Our findings suggest a mechanistic explanation for the clinical association of EBVaGC with a lower IL-15Rα expression, a better prognosis and an increased lymphocyte infiltration. We propose that in highly infiltrated GCs the IL-15/IL-15Rα complex on the GC cell surface may present IL-15 in trans to IL-2Rβ/γ-expressing immune cells to activate these cells in the tumor microenvironment.
Tài liệu tham khảo
J.G. Giri, M. Ahdieh, J. Eisenman, K. Shanebeck, K. Grabstein, S. Kumaki, A. Namen, L.S. Park, D. Cosman, D. Anderson, Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J. 13, 2822–2830 (1994)
V. Budagian, E. Bulanova, R. Paus, S. Bulfone-Paus, IL-15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine Growth Factor Rev. 17, 259–280 (2006). https://doi.org/10.1016/j.cytogfr.2006.05.001
J. Lodolce, P. Burkett, R. Koka, D. Boone, M. Chien, F. Chan, M. Madonia, S. Chai, A. Ma, Interleukin-15 and the regulation of lymphoid homeostasis. Mol. Immunol. 39, 537–544 (2002). https://doi.org/10.1016/s0161-5890(02)00211-0
W.J. Leonard, Cytokines and immunodeficiency diseases. Nat. Rev. Immunol. 1, 200–208 (2001). https://doi.org/10.1038/35105066
B. Becknell, M.A. Caligiuri, Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv. Immunol. 86, 209–239 (2005). https://doi.org/10.1016/s0065-2776(04)86006-1
S. Bulfone-Paus, D. Ungureanu, T. Pohl, G. Lindner, R. Paus, R. Ruckert, H. Krause, U. Kunzendorf, Interleukin-15 protects from lethal apoptosis in vivo. Nat. Med. 3, 1124–1128 (1997)
T.A. Waldmann, The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res 3, 219–227 (2015). https://doi.org/10.1158/2326-6066.cir-15-0009
C.L. Sutherland, B. Rabinovich, N.J. Chalupny, P. Brawand, R. Miller, D. Cosman, ULBPs, human ligands of the NKG2D receptor, stimulate tumor immunity with enhancement by IL-15. Blood 108, 1313–1319 (2006). https://doi.org/10.1182/blood-2005-11-011320
P. Marra, S. Mathew, A. Grigoriadis, Y. Wu, F. Kyle-Cezar, J. Watkins, M. Rashid, E. De Rinaldis, S. Hessey, P. Gazinska, A. Hayday, A. Tutt, IL15RA drives antagonistic mechanisms of cancer development and immune control in lymphocyte-enriched triple-negative breast cancers. Cancer Res. 74, 4908–4921 (2014). https://doi.org/10.1158/0008-5472.can-14-0637
R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019). https://doi.org/10.3322/caac.21551
J. Ferlay, I. Soerjomataram, M. Ervik, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D.M. Parkin, D. Forman, F. Bray, (International Agency for Research on Cancer, Lyon, France, 2013)
P. Zhang, L. Shi, T. Zhang, L. Hong, W. He, P. Cao, X. Shen, P. Zheng, Y. Xia, P. Zou, Piperlongumine potentiates the antitumor efficacy of oxaliplatin through ROS induction in gastric cancer cells. Cell. Oncol. 42, 847–860 (2019). https://doi.org/10.1007/s13402-019-00471-x
W. Chen, R. Zheng, P.D. Baade, S. Zhang, H. Zeng, F. Bray, A. Jemal, X.Q. Yu, J. He, Cancer statistics in China, 2015. CA Cancer J. Clin. 66, 115–132 (2016). https://doi.org/10.3322/caac.21338
A.T. Deyrup, Epstein-Barr virus-associated epithelial and mesenchymal neoplasms. Hum. Pathol. 39, 473–483 (2008). https://doi.org/10.1016/j.humpath.2007.10.030
P. Boyle, B. Levin, World cancer report 2008 (IARC Press, Lyon, 2008)
K. Takada, Epstein-Barr virus and gastric carcinoma. Mol. Pathol. 53, 255–261 (2000). https://doi.org/10.1136/mp.53.5.255
J.H. Lee, S.H. Kim, S.H. Han, J.S. An, E.S. Lee, Y.S. Kim, Clinicopathological and molecular characteristics of Epstein-Barr virus-associated gastric carcinoma: a meta-analysis. J. Gastroenterol. Hepatol. 24, 354–365 (2009). https://doi.org/10.1111/j.1440-1746.2009.05775.x
G. Murphy, R. Pfeiffer, M.C. Camargo, C.S. Rabkin, Meta-analysis shows that prevalence of Epstein-Barr virus-positive gastric cancer differs based on sex and anatomic location. Gastroenterology 137, 824–833 (2009). https://doi.org/10.1053/j.gastro.2009.05.001
J. van Beek, A. zur Hausen, E. Klein Kranenbarg, C.J. van de Velde, J.M. Middeldorp, A.J. van den Brule, C.J. Meijer, E. Bloemena, EBV-positive gastric adenocarcinomas: a distinct clinicopathologic entity with a low frequency of lymph node involvement. J. Clin. Oncol. 22, 664–670 (2004). https://doi.org/10.1200/jco.2004.08.061
M.C. Camargo, W.H. Kim, A.M. Chiaravalli, K.M. Kim, A.H. Corvalan, K. Matsuo, J. Yu, J.J. Sung, R. Herrera-Goepfert, F. Meneses-Gonzalez, Y. Kijima, S. Natsugoe, L.M. Liao, J. Lissowska, S. Kim, N. Hu, C.A. Gonzalez, Y. Yatabe, C. Koriyama, S.M. Hewitt, S. Akiba, M.L. Gulley, P.R. Taylor, C.S. Rabkin, Improved survival of gastric cancer with tumour Epstein-Barr virus positivity: an international pooled analysis. Gut 63, 236–243 (2014). https://doi.org/10.1136/gutjnl-2013-304531
Q. Tao, L.S. Young, C.B. Woodman, P.G. Murray, Epstein-Barr virus (EBV) and its associated human cancers–genetics, epigenetics, pathobiology and novel therapeutics. Front. Biosci. 11, 2672–2713 (2006)
R. Hino, H. Uozaki, Y. Inoue, Y. Shintani, T. Ushiku, T. Sakatani, K. Takada, M. Fukayama, Survival advantage of EBV-associated gastric carcinoma: survivin up-regulation by viral latent membrane protein 2A. Cancer Res. 68, 1427–1435 (2008). https://doi.org/10.1158/0008-5472.can-07-3027
T. Ushiku, J.M. Chong, H. Uozaki, R. Hino, M.S. Chang, M. Sudo, B.R. Rani, K. Sakuma, H. Nagai, M. Fukayama, p73 gene promoter methylation in Epstein-Barr virus-associated gastric carcinoma. Int. J. Cancer 120, 60–66 (2007). https://doi.org/10.1002/ijc.22275
H. Geddert, A. zur Hausen, H.E. Gabbert, M. Sarbia, EBV-infection in cardiac and non-cardiac gastric adenocarcinomas is associated with promoter methylation of p16, p14 and APC, but not hMLH1. Cell. Oncol. 34, 209–214 (2011). https://doi.org/10.1007/s13402-011-0028-6
M. Sudo, J.M. Chong, K. Sakuma, T. Ushiku, H. Uozaki, H. Nagai, N. Funata, Y. Matsumoto, M. Fukayama, Promoter hypermethylation of E-cadherin and its abnormal expression in Epstein-Barr virus-associated gastric carcinoma. Int. J. Cancer 109, 194–199 (2004). https://doi.org/10.1002/ijc.11701
J. Zhao, Q. Liang, K.F. Cheung, W. Kang, R.W. Lung, J.H. Tong, K.F. To, J.J. Sung, J. Yu, Genome-wide identification of Epstein-Barr virus-driven promoter methylation profiles of human genes in gastric cancer cells. Cancer 119, 304–312 (2013). https://doi.org/10.1002/cncr.27724
J.D. Burton, R.N. Bamford, C. Peters, A.J. Grant, G. Kurys, C.K. Goldman, J. Brennan, E. Roessler, T.A. Waldmann, A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc. Natl. Acad. Sci. U. S. A. 91, 4935–4939 (1994). https://doi.org/10.1073/pnas.91.11.4935
E.H. Duitman, Z. Orinska, E. Bulanova, R. Paus, S. Bulfone-Paus, How a cytokine is chaperoned through the secretory pathway by complexing with its own receptor: lessons from interleukin-15 (IL-15)/IL-15 receptor alpha. Mol. Cell. Biol. 28, 4851–4861 (2008). https://doi.org/10.1128/mcb.02178-07
K.H. Grabstein, J. Eisenman, K. Shanebeck, C. Rauch, S. Srinivasan, V. Fung, C. Beers, J. Richardson, M.A. Schoenborn, M. Ahdieh et al., Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 264, 965–968 (1994). https://doi.org/10.1126/science.8178155
R.J. Armitage, B.M. Macduff, J. Eisenman, R. Paxton, K.H. Grabstein, IL-15 has stimulatory activity for the induction of B cell proliferation and differentiation. J. Immunol. 154, 483–490 (1995)
W.E. Carson, T.A. Fehniger, S. Haldar, K. Eckhert, M.J. Lindemann, C.F. Lai, C.M. Croce, H. Baumann, M.A. Caligiuri, A potential role for interleukin-15 in the regulation of human natural killer cell survival. J. Clin. Invest. 99, 937–943 (1997). https://doi.org/10.1172/jci119258
T.A. Waldmann, The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 6, 595–601 (2006). https://doi.org/10.1038/nri1901
T. Taniguchi, Y. Minami, The IL-2/IL-2 receptor system: a current overview. Cell 73, 5–8 (1993). https://doi.org/10.1016/0092-8674(93)90152-g
R. Pereno, J. Giron-Michel, A. Gaggero, E. Cazes, R. Meazza, M. Monetti, E. Monaco, Z. Mishal, C. Jasmin, F. Indiveri, S. Ferrini, B. Azzarone, IL-15/IL-15Ralpha intracellular trafficking in human melanoma cells and signal transduction through the IL-15Ralpha. Oncogene 19, 5153–5162 (2000). https://doi.org/10.1038/sj.onc.1203873
T.A. Waldmann, S. Dubois, J. Muller, C. Goldman, S. Damjanovich, in Biophysical Aspects of Transmembrane Signaling, ed. by S. Damjanovich (Springer, Heidelberg, 2005), p. 97–121
S. Dubois, W. Shou, L.S. Haneline, S. Fleischer, T.A. Waldmann, J.R. Muller, Distinct pathways involving the FK506-binding proteins 12 and 12.6 underlie IL-2-versus IL-15-mediated proliferation of T cells. Proc. Natl. Acad. Sci. U. S. A. 100, 14169–14174 (2003). https://doi.org/10.1073/pnas.2335979100
S.W. Stonier, K.S. Schluns, Trans-presentation: a novel mechanism regulating IL-15 delivery and responses. Immunol. Lett. 127, 85–92 (2010). https://doi.org/10.1016/j.imlet.2009.09.009
P.R. Burkett, R. Koka, M. Chien, S. Chai, D.L. Boone, A. Ma, Coordinate expression and trans presentation of interleukin (IL)-15Ralpha and IL-15 supports natural killer cell and memory CD8 + T cell homeostasis. J. Exp. Med. 200, 825–834 (2004). https://doi.org/10.1084/jem.20041389
N.D. Huntington, N. Legrand, N.L. Alves, B. Jaron, K. Weijer, A. Plet, E. Corcuff, E. Mortier, Y. Jacques, H. Spits, J.P. Di Santo, IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J. Exp. Med. 206, 25–34 (2009). https://doi.org/10.1084/jem.20082013
H. Kobayashi, S. Dubois, N. Sato, H. Sabzevari, Y. Sakai, T.A. Waldmann, Y. Tagaya, Role of trans-cellular IL-15 presentation in the activation of NK cell-mediated killing, which leads to enhanced tumor immunosurveillance. Blood 105, 721–727 (2005). https://doi.org/10.1182/blood-2003-12-4187
D. Meghnem, S. Morisseau, M. Frutoso, K. Trillet, M. Maillasson, I. Barbieux, S. Khaddage, I. Leray, M. Hildinger, A. Quemener, Y. Jacques, E. Mortier, Cutting edge: eifferential fine-tuning of IL-2- and IL-15-dependent functions by targeting their common IL-2/15Rbeta/gammac receptor. J. Immunol. 198, 4563–4568 (2017). https://doi.org/10.4049/jimmunol.1700046
C. Figueiredo, M.C. Camargo, M. Leite, E.M. Fuentes-Panana, C.S. Rabkin, J.C. Machado, Pathogenesis of gastric cancer: genetics and molecular classification. Curr. Top. Microbiol. Immunol. 400, 277–304 (2017). https://doi.org/10.1007/978-3-319-50520-6_12
R.M. Santana Carrero, F. Beceren-Braun, S.C. Rivas, S.M. Hegde, A. Gangadharan, D. Plote, G. Pham, S.M. Anthony, K.S. Schluns, IL-15 is a component of the inflammatory milieu in the tumor microenvironment promoting antitumor responses. Proc. Natl. Acad. Sci. U. S. A. 116, 599–608 (2019). https://doi.org/10.1073/pnas.1814642116
J. Li, W. Liu, K. Che, Y. Zhang, Z. Zhao, B. Luo, The methylation status and expression of Epstein-Barr virus early genes BARF1 and BHRF1 in Epstein-Barr virus-associated gastric carcinomas. Gastroenterol. Res. Pract. 2017, 3804146 (2017). https://doi.org/10.1155/2017/3804146
A.C. Stevens, J. Matthews, P. Andres, V. Baffis, X.X. Zheng, D.W. Chae, J. Smith, T.B. Strom, W. Maslinski, Interleukin-15 signals T84 colonic epithelial cells in the absence of the interleukin-2 receptor beta-chain. Am. J. Physiol. 272, G1201–G1208 (1997). https://doi.org/10.1152/ajpgi.1997.272.5.G1201
Q. Wang, G. Gao, T. Zhang, K. Yao, H. Chen, M.H. Park, H. Yamamoto, K. Wang, W. Ma, M. Malakhova, A.M. Bode, Z. Dong, TRAF1 is critical for regulating the BRAF/MEK/ERK pathway in non-small cell lung carcinogenesis. Cancer Res. 78, 3982–3994 (2018). https://doi.org/10.1158/0008-5472.can-18-0429
C.D. Andl, T. Mizushima, K. Oyama, M. Bowser, H. Nakagawa, A.K. Rustgi, EGFR-induced cell migration is mediated predominantly by the JAK-STAT pathway in primary esophageal keratinocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G1227–G1237 (2004). https://doi.org/10.1152/ajpgi.00253.2004
A. Masuda, T. Matsuguchi, K. Yamaki, T. Hayakawa, M. Kubo, W.J. LaRochelle, Y. Yoshikai, Interleukin-15 induces rapid tyrosine phosphorylation of STAT6 and the expression of interleukin-4 in mouse mast cells. J. Biol. Chem. 275, 29331–29337 (2000). https://doi.org/10.1074/jbc.M910290199
L.P. Gong, J.N. Chen, L. Xiao, Q. He, Z.Y. Feng, Z.G. Zhang, J.P. Liu, H.B. Wei, C.K. Shao, The implication of tumor-infiltrating lymphocytes in Epstein-Barr virus-associated gastric carcinoma. Hum. Pathol. 85, 82–91 (2019). https://doi.org/10.1016/j.humpath.2018.11.002