Tubule Nanoclay‐Organic Heterostructures for Biomedical Applications

Macromolecular Bioscience - Tập 19 Số 4 - 2019
Mingxian Liu1,2, Rawil Fakhrullin3, А. А. Новиков4, Abhishek Panchal2, Yuri Lvov4,2
1Department of Materials Science and Engineering Jinan University Guangzhou 510632 P. R. China
2Institute for Micromanufacturing Louisiana Tech University Ruston LA 71270 USA
3Bionanotechnology Lab Kazan Federal University Kazan 420008 Republic of Tatarstan Russian Federation
4Functional Aluminosilicate Nanomaterials Lab Gubkin Russian State University of Oil and Gas Moscow 119991 Russia

Tóm tắt

AbstractNatural halloysite nanotubes (HNTs) show unique hollow structure, high aspect ratio and adsorption ability, good biocompatibility, and low toxicity, which allow for various biomedical applications in the diagnosis and treatment of diseases. Here, advances in self‐assembly of halloysite for cell capturing and bacterial proliferation, coating on biological surfaces and related drug delivery, bone regeneration, bioscaffolds, and cell labeling are summarized. The in vivo toxicity of these clay nanotubes is discussed. Halloysite allows for 10–20% drug loading and can extend the delivery time to 10–100 h. These drug‐loaded nanotubes are doped into the polymer scaffolds to release the loaded drugs. The rough surfaces fabricated by self‐assembly of the clay nanotubes enhance the interactions with tumor cells, and the cell capture efficacy is significantly improved. Since halloysite has no toxicity toward microorganisms, the bacteria composed within these nanotubes can be explored in oil/water emulsion for petroleum spilling bioremediation. Coating of living cells with halloysite can control the cell growth and is not harmful to their viability. Quantum dots immobilized on halloysite were employed for cell labeling and imaging. The concluding academic results combined with the abundant availability of these natural nanotubes promise halloysite applications in personal healthcare and environmental remediation.

Từ khóa


Tài liệu tham khảo

10.1002/adma.201502341

10.1021/nn800259q

10.1016/j.progpolymsci.2013.05.009

10.1016/j.progpolymsci.2014.04.004

10.1016/j.clay.2012.06.014

10.1016/j.clay.2015.05.001

10.1039/C8TB00543E

10.1002/mabi.201200121

10.1039/C4RA02189D

10.1177/0885328215593837

10.1039/C6TB00051G

10.1016/j.biomaterials.2015.03.045

10.1186/s11671-017-1859-5

10.1021/jp307961q

Pickett M. K., 2018, Abstracts of Papers of the American Chemical Society

10.1016/j.jcis.2014.10.050

10.1021/acsami.6b01342

10.1039/C6TB02538B

10.1021/acs.langmuir.6b04460

10.1016/j.msec.2017.12.030

10.1002/admi.201600435

10.1021/acssuschemeng.8b02744

10.1016/j.jcis.2015.10.064

10.1021/jp411610a

10.1016/j.colsurfa.2014.09.037

10.1021/acs.langmuir.5b03878

10.1016/j.colsurfb.2018.01.021

10.1007/978-3-642-15901-5

10.1039/b604537p

10.1039/C8NR05949G

10.1002/app.24774

10.1080/02652040010019532

10.1016/j.cis.2018.05.007

10.1021/ja210258y

10.1021/am404693r

Amro B., 1993, J. Soc. Cosmet. Chem., 45, 159

10.1093/pch/pxx165

10.1517/14740338.5.1.169

10.1007/s00436-009-1680-x

10.1517/17425247.2016.1169271

10.1088/1361-6528/aa8393

10.1016/j.msec.2017.07.035

10.1021/acsami.7b04297

10.1002/mame.201100309

10.3390/bioengineering4040096

Zhou W. Y., 2010, J. Biomed. Mater. Res., Part A, 93, 1574

10.1039/c3tb20084a

10.1039/c0jm01328e

10.4155/tde-2017-0041

10.1016/j.colsurfb.2015.07.021

10.1016/j.nanoso.2018.03.009

10.1039/c2cc38254g

10.1002/tox.21824

10.1180/claymin.2016.051.3.07

10.1039/C4EN00135D

10.1021/bm9014446

10.1016/j.ijpharm.2014.09.019

10.1038/srep10560

10.1016/j.xphs.2017.05.034

10.3390/nano8060391

10.1039/C5EN00201J

10.1002/tox.22543

10.1039/C6NR00641H

10.1039/C8TB01382A

10.1016/j.impact.2018.04.003