Trypsin gene expression in adults and larvae of tropical gar Atractosteus tropicus

Fish Physiology and Biochemistry - Tập 46 Số 1 - Trang 145-155 - 2020
Kristal de M. Jesús-De la Cruz1, Ángela Ávila‐Fernández2, Emyr S. Peña‐Marín1, Luis Daniel Jiménez‐Martínez1, Dariel Tovar‐Ramírez3, Rafael Martínez‐García1, Rocío Guerrero‐Zárate1, Gloria Gertrudys Asencio-Alcudia1, Carlos Alfonso Álvarez-González1
1Laboratorio de Acuicultura Tropical, DACBiol-UJAT, Carretera Villahermosa-Cárdenas Km 0.5, C.P. 86139, Villahermosa, Tabasco, Mexico
2Laboratorio de Biología Molecular y Biotecnología, DACS-UJAT, Avenida Gregorio Méndez 2838-A Col. Tamulté, C.P. 86100, Villahermosa, Tabasco, Mexico
3Laboratorio de Fisiología Comparada y Genómica Funcional, Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Colonia Playa Palo de Santa Rita Sur, C.P. 23096, La Paz, B.C.S, Mexico

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aguilera C, Mendoza R, Rodríguez G, Márquez G (2002) Morphological description of alligator gar and tropical gar larvae, with an emphasis on growth indicators. Trans Am Fish Soc 131(5):899–909. https://doi.org/10.1577/1548-8659(2002)131<0899:MDOAGA>2.0.CO;2

Aguilera C, Mendoza R, Iracheta I, Marquez G (2012) Digestive enzymatic activity on tropical gar (Atractosteus tropicus) larvae fed different diets. Fish Physiol Biochem 38:679–691. https://doi.org/10.1007/s10695-011-9550-8

Ahsan N, Funabara D, Watabe S (2001) Molecular cloning and characterization of two isoforms of trypsinogen from anchovy pyloric ceca. Mar Biotechnol 3:80–90. https://doi.org/10.1007/s101260000055

Braasch I, Gehrke AR, Smith JJ, Kawasaki K, Manousaki T, Pasquier, J, …, Berlin, AM (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet, 48(4), 427-437. https://doi.org/10.1038/ng.3526

Cahu C, Rønnestad I, Grangier V, Zambonino-Infante JL (2004) Expression and activities of pancreatic enzymes in developing sea bass larvae (Dicentrarchus labrax) in relation to intact and hydrolyzed dietary protein; involvement of cholecystokinin. Aquaculture 238:295–308. https://doi.org/10.1016/j.aquaculture.2004.04.013

Cao MJ, Osatomi K, Suzuki M, Hara K, Tachibana K, Ishihara T (2000) Purification and characterization of two anionic trypsins from the hepatopancreas of carp. Fish Sci 66:1172–1179. https://doi.org/10.1046/j.1444-2906.2000.00185.x

Castillo-Yáñez FJ, Pacheco-Aguilar R, García-Carreño FL, Navarrete-Del Toro MA (2005) Isolation and characterization of trypsin from pyloric caeca of Monterey sardine Sardinops sagax caerulea. Comp Biochem Physiol 140(1B):91–98. https://doi.org/10.1016/j.cbpc.2004.09.031

Chen N, Zou J, Wang S, Ye Y, Huang Y, Gadda G, Yang J (2010) Designing protease sensors for real-time imaging of trypsin activation in pancreatic cancer cells. Proc Natl Acad Sci U S A 48(15):3519–3526. https://doi.org/10.1021/bi802289v.Designing

Darias MJ, Murray HM, Martínez-Rodríguez G, Cárdenas S, Yúfera M (2005) Gene expression of pepsinogen during the larval development of red porgy (Pagrus pagrus). Aquaculture 248:245–252. https://doi.org/10.1016/j.aquaculture.2005.04.044

De la Parra AM, Rosas A, Lazo JP, Viana MT (2007) Partial characterization of the digestive enzymes of Pacific bluefin tuna Thunnus orientalis under culture conditions. Fish Physiol Biochem 33:223–231. https://doi.org/10.1007/s10695-007-9134-9

Frías-Quintana CA, Alvarez-González CA, Márquez-Couturier G (2010). Diseño de microdietas para el larvicultivo de pejelagarto Atractosteus tropicus, Gill 1863. Universidad y Ciencia 26(2):265–282. Retrieved from http://www.scielo.org.mx/pdf/uc/v26n3/v26n3a6.pdf

Frías-Quintana CA, Márquez-Couturier G, Álvarez-González CA, Tovar-Ramírez D, Nolasco-Soria H, Galaviz-Espinosa MA, Martínez-García R, Camarillo-Coop S, Martínez-Yañez R, Gisbert E (2015) Development of digestive tract and enzyme activities during the early ontogeny of the tropical gar Atractosteus tropicus. Fish Physiol Biochem 41(5):1075–1091. https://doi.org/10.1007/s10695-015-0070-9

Frías-Quintana CA, Domínguez-Lorenzo J, Alvarez-González CA, Tovar-Ramírez D, Martínez-García R (2016) Using cornstarch in microparticulate diets for larvicultured tropical gar (Atractosteus tropicus). Fish Physiol Biochem 42(2):517–528. https://doi.org/10.1007/s10695-015-0156-4

Frías-Quintana CA, Alvarez-González CA, Tovar-Ramírez D, Martínez-García R, Camarillo-Coop S, Peña E, Galaviz MA (2017) Use of potato starch in diets of tropical gar (Atractosteus tropicus, Gill 1863) larvae. Fishes 2(1):1–11. https://doi.org/10.3390/fishes2010003

Galaviz MA, García-Ortega A, Gisbert E, López LM, García Gasca A (2012) Expression and activity of trypsin and pepsin during larval development of the spotted rose snapper Lutjanus guttatus. Comp Biochem Physiol 161(1B):9–16. https://doi.org/10.1016/j.cbpb.2011.09.001

Galaviz MA, López LM, García Gasca A, Álvarez González CA, True CD, Gisbert E (2015) Digestive system development and study of acid and alkaline protease digestive capacities using biochemical and molecular approaches in totoaba (Totoaba macdonaldi) larvae. Fish Physiol Biochem 41(5):1117–1130. https://doi.org/10.1007/s10695-015-0073-6

García-Gasca A, Galaviz MA, Gutiérrez JN, García-Ortega A (2006) Development of the digestive tract, trypsin activity and gene expression in eggs and larvae of the bullseye puffer fish Sphoeroides annulatus. Aquaculture 251:366–376. https://doi.org/10.1016/j.aquaculture.2005.05.029

Gawlicka AK, Horn MH (2006) Trypsin gene expression by quantitative in situ hybridization in carnivorous and herbivorous prickleback fishes (Teleostei : Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Physiol Biochem Zool 79(1):120–132. https://doi.org/10.1086/498289

Guerrero-Zarate R, Álvarez-González CA, Olvera-Novoa MA, Perales-García N, Frías-Quintana CA, Martínez-García R, Contreras-Sánchez WM (2014) Partial characterization of digestive proteases in tropical gar Atractosteus tropicus juveniles. Fish Physiol Biochem 40(4):1021–1029. https://doi.org/10.1007/s10695-013-9902-7

Hirota M, Ohmuraya M, Baba H (2006) The role of trypsin, trypsin inhibitor, and trypsin receptor in the onset and aggravation of pancreatitis. J Gastroenterol 41:832–836. https://doi.org/10.1007/s00535-006-1874-2

Jiménez-Martínez LD, Álvarez-González CA, De la Cruz-Hernández E, Tovar-Ramírez D, Galaviz MA, Camarillo-Coop S, Martínez-García R, Concha-Frías B, Peña E (2019) Partial sequence characterization and ontogenetic expression of genes involved in lipid metabolism in the tropical gar (Atractosteus tropicus). Aquac Res 50(1):162–172

Kishimura H, Hayashi K, Miyashita Y, Nonami Y (2006) Characteristics of trypsins from the viscera of true sardine (Sardinops melanostictus) and the pyloric ceca of arabesque greenling (Pleuroprammus azonus). Food Chem 97(1):65–70. https://doi.org/10.1016/j.foodchem.2005.03.008

Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK (2007) Purification and characterisation of trypsins from the spleen of skipjack tuna (Katsuwonus pelamis). Food Chem 100(4):1580–1589. https://doi.org/10.1016/j.foodchem.2006.01.001

Kolkovski S (2001) Digestive enzymes in fish larvae and juveniles-implications and applications to formulated diets. Aquaculture 200(1–2):181–201. https://doi.org/10.1016/S0044-8486(01)00700-1

Koshikawa N, Hasegawa S, Nagashima Y, Mitsuhashi K, Tsubota Y, Miyata S, Miyagi Y, Yasumitsu H, Miyazaki K (1998) Expression of trypsin by epithelial cells of various tissues, leukocytes, and neurons in human and mouse. Am J Pathol 153(3):937–944. https://doi.org/10.1016/S0002-9440(10)65635-0

Kurokawa T, Suzuki T, Ohta H, Kagawa H, Tanaka H (2002) Expression of pancreatic enzyme genes during the early larval stage of Japanese eel Anguilla japonica. Fish Sci 68:736–744. https://doi.org/10.1046/j.1444-2906.2002.00487.x

Lilleeng E, Froystad MK, Ostby GC, Valen EC, Krogdahl A (2007) Effects of diets containing soybean meal on trypsin mRNA expression and activity in Atlantic salmon (Salmo salar L). Comp Biochem Physiol 147A:25–36. https://doi.org/10.1016/j.cbpa.2006.10.043

Liu CH, Shiu YL, Jue-Liang H (2012) Purification and characterization of trypsin from the pyloric ceca of orange-spotted grouper, Epinephelus coioides. Fish Physiol Biochem 38:837–848. https://doi.org/10.1007/s10695-011-9571-3

Liu CH, Chen YH, Shiu YL (2013) Molecular characterization of two trypsinogens in the orange-spotted grouper, Epinephelus coioides, and their expression in tissues during early development. Fish Physiol Biochem 39:201–214. https://doi.org/10.1007/s10695-012-9691-4

Lo MJ, Weng CF (2006) Developmental regulation of gastric pepsin and pancreatic serine protease in larvae of the euryhaline teleost, Oreochromis mossambicus. Aquaculture 261:1403–1412. https://doi.org/10.1016/j.aquaculture.2006.09.016

Lu BJ, Zhou LG, Cai QF, Hara K, Maeda A, Su WJ, Cao MJ (2008) Purification and characterisation of trypsins from the pyloric caeca of mandarin fish (Siniperca chuatsi). Food Chem 110(2):352–360. https://doi.org/10.1016/j.foodchem.2008.02.010

Manchado M, Infante C, Asensio E, Crespo A, Zuasti E, Cañavete JP (2008) Molecular characterization and gene expression of six trypsinogens in the flatfish Senegalese sole (Solea senegalensis Kaup) during larval development and in tissues. Comp Biochem Physiol 149A:334–344. https://doi.org/10.1016/j.cbpb.2007.10.005

Márquez-Couturier G, Vásquez-Navarrete CJ (2015) Empoderamiento de las organizaciones sociales en el cultivo de pejelagarto (Atractosteus tropicus) en el sureste de México. Agroproductividad 8(3):38–43

Márquez-Couturier G, Vázquez-Navarrete CJ (2015) Estado de arte de la biología y cultivo de pejelagarto (Atractosteus tropicus). Agroproductividad 8(3):44–51

Márquez-Couturier G, Vásquez-Navarrete CJ, Contreras-Sánchez WM, Álvarez-González CA (2015). Acuicultura tropical sustentable: Una estrategia para la producción y conservación del pejelagarto (Atractosteus tropicus) en Tabasco, México Colección José Narciso Rovirosa, 2nd edition. Villahermosa, Tabasco. México. 87 pp

Martin SA, Caplice NC, Davey GC, Powell R (2002) EST-based identification of genes expressed in the liver of adult Atlantic salmon (Salmo salar). Biochem Biophys Res Commun 293:578–585. https://doi.org/10.1016/S0006-291X(02)00263-2

Mendoza R, Aguilera C, Rodríguez G, González M, Castro R (2002) Morphophysiological studies on alligator gar (Atractosteus spatula) larval development as a basis for their culture and repopulation of their natural habitats. Rev Fish Biol Fish 12:133–142. https://doi.org/10.1023/A:1025047914814

Mendoza-Alfaro R, Aguilera-González C, Ferrara AM (2008) Gar biology and culture: status and prospects. Aquac Res 39:748–763. https://doi.org/10.1111/j.1365-2109.2008.01927.x

Moyano FJ, Díaz M, Alarcón FJ, Sarasquete MC (1996) Characterization of digestive enzyme activity during larval development of gilthead seabream (Sparus aurata). Fish Physiol Biochem 15(2):121–130. https://doi.org/10.1007/BF01875591

Murashita K, Furuita H, Matsunari H, Yamamoto T, Awaji M, Nomura K, Nagao J, Tanaka H (2013) Partial characterization and ontogenetic development of pancreatic digestive enzymes in Japanese eel Anguilla japonica larvae. Fish Physiol Biochem 39:895–905. https://doi.org/10.1007/s10695-012-9749-3

Murray HM, Pérez-Casanova JC, Gallant JW, Johnson SC, Douglas SE (2004) Trypsinogen expression during the development of the exocrine pancreas in winter flounder (Pleuronectes americanus). Comp Biochem Physiol 138A:53–59. https://doi.org/10.1016/j.cbpb.2004.02.020

Murray HM, Gallant JW, Johnson SC, Douglas SE (2006) Cloning and expression analysis of three digestive enzymes from Atlantic halibut (Hippoglossus hippoglossus) during early development: predicting gastrointestinal functionality. Aquaculture 252:394–408. https://doi.org/10.1016/j.aquaculture.2005.03.030

Péres A, Zambonino-Infante JL, Cahu C (1998) Dietary regulation of activities and mRNA levels of trypsin and amylase in sea bass (Dicentrarchus labrax) larvae. Fish Physiol Biochem 19:145–152. https://doi.org/10.1023/A:1007775501340

Perez-Casanova JC, Murray HM, Gallant JW, Ross NW, Douglas SE, Johnson SC (2006) Development of the digestive capacity in larvae of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua). Aquaculture 251:377–401. https://doi.org/10.1016/j.aquaculture.2005.06.007

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29(9):2002–2007. https://doi.org/10.1093/nar/29.9.e45

Raraty M, Ward J, Erdemli G, Vaillant C, Neoptolemos JP, Sutton R, Petersen OH (2000) Calcium-dependent enzyme activation and vacuole formation in the apical granular region of pancreatic acinar cells. Proc Natl Acad Sci U S A 97(24):13126–13131

Rønnestad I, Yúfera M, Ueberschär B, Ribeiro L, Saele Ø, Boglione C (2013) Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Rev Aquac 5(1):559–598. https://doi.org/10.1111/raq.12010

Ruan GL, Li Y, Gao ZX, Wang HL, Wang WM (2010) Molecular characterization of trypsinogens and development of trypsinogen gene expression and tryptic activities in grass carp (Ctenopharyngodon idellus) and topmouth culter (Culter alburnus). Comp Biochem Physiol 155(1B):77–85. https://doi.org/10.1016/j.cbpb.2009.10.005

Rungruangsak-Torrisen K (2012). Trypsin and its implementations for growth, maturation, and dietary quality assessment. In: Kirk W, Clayton K (Eds), Trypsin: Structure, Biosynthesis and Functions (pp. 1–59). Nova Science Publishers, Inc. Retrieved from http://www.novapublishers.org/catalog/product_info.php?products_id=38114

Rungruangsak-Torrisen K, Sundby A (2000) Protease activities, plasma free amino acids and insulin at different ages of Atlantic salmon (Salmo salar L.) with genetically different trypsin isozymes. Fish Physiol Biochem 22:337–347. https://doi.org/10.1023/A:1007864413112

Rungruangsak-Torrissen K, Moss R, Andresen LH, Berg A, Waagbø R (2006) Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon (Salmo salar L.). Fish Physiol Biochem 32(1):7–23. https://doi.org/10.1007/s10695-005-0630-5

Sastre J, Sabater L, Aparisi L (2005). Fisiología de la secreción pancreática. Gastroenterol Hepatol 28(Supl 2):3–9. Retrieved from https://www.elsevier.es/es-revista-gastroenterologia-hepatologia-14-pdf-13071380

Sunde J, Eiane SA, Rustad A, Jensen HB, Opstvedt J, Nygard E, Ventujrini G, Rungruangsak-Torrisen K (2004) Effect of fish feed processing conditions on digestive protease activities, free amino acid pools, feed conversion efficiency and growth in Atlantic salmon (Salmo salar L.). Aquac Nutr 10:261–277. https://doi.org/10.1111/j.1365-2095.2004.00300.x

Suzuki T, Srivastava AS, Kurokawa T (2002) cDNA cloning and phylogenetic analysis of pancreatic serine proteases from Japanese flounder, Paralichthys olivaceus. Comp Biochem Physiol 131B:63–70. https://doi.org/10.1016/S1096-4959(01)00487-0

Thrower EC, Diaz De Villalvilla APE, Kolodecik TR, Gorelick FS (2006) Zymogen activation in a reconstituted pancreatic acinar cell system. Am J Physiol Gastrointest Liver Physiol 290(5):1–25. https://doi.org/10.1152/ajpgi.00373.2005.Zymogen

Wang C, Xie S, Zhu X, Lei W, Yang Y, Liu J (2006) Effects of age and dietary protein level on digestive enzyme activity and gene expression of Pelteobagrus fulvidraco larvae. Aquaculture 254:554–562. https://doi.org/10.1016/j.aquaculture.2005.11.036

Zambonino-Infante JL, Cahu CL (2007) Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: applications to diet formulation. Aquaculture 268:98–105. https://doi.org/10.1016/j.aquaculture.2007.04.032

Zambonino-Infante JL, Gisbert E, Sarasquete C, Navarro I, Gutiérrez J, Cahu, CL (2008) Ontogeny and physiology of the digestive system of marine fish larvae. In: Cyrino JEP, Bureau DP, Kapoor BG (Eds.), Feeding and Digestive Functions of Fishes (1st ed., pp. 281–348). Enfield, N.H. : Science Publishers. Retrieved from https://archimer.ifremer.fr/doc/00086/19684/17307.pdf

Zhou LZ, Ruan MM, Cai QF, Liu GM, Sun LC, Su WJ, Cao MJ (2012) Purification, characterization and cDNA cloning of a trypsin from the hepatopancreas of snakehead (Channa argus). Comp Biochem Physiol 161(3B):247–254. https://doi.org/10.1016/j.cbpb.2011.11.012