Trypanothione Reductase: A Target Protein for a Combined In Vitro and In Silico Screening Approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
L Flohé, 2011, The trypanothione system and the opportunities it offers to create drugs for the neglected kinetoplast diseases, Biotechnol Advances, 30, 294, 10.1016/j.biotechadv.2011.05.012
A.A. Ilemobade, 2009, Tsetse and trypanosomosis in Africa: the challenges, the opportunities, Onderstepoort J Vet Res, 76, 35, 10.4102/ojvr.v76i1.59
WHO. Working to overcome the global impact of neglected tropical diseases. Available from <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://www.who.int/neglected_diseases/2010report/en/" xlink:type="simple">http://www.who.int/neglected_diseases/2010report/en/</ext-link> (2010).
AH Fairlamb, 2013, Trypanosomatid Diseases, Molecular Routes to Drug Discovery
T Jäger, 2013, Trypanosomatid Diseases, Molecular Routes to Drug Discovery
S Krieger, 2002, Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress, Mol Microbiol, 35, 542, 10.1046/j.1365-2958.2000.01721.x
J Tovar, 1998, Evidence that trypanothione reductase is an essential enzyme in Leishmania by targeted replacement of the tryA gene locus, Mol Microbiol, 29, 653, 10.1046/j.1365-2958.1998.00968.x
RL Krauth-Siegel, 2005, Dithiol proteins as guardians of the intracellular redox milieu in parasites: old and new drug targets in trypanosomes and malaria-causing plasmodia, Angew Chem Int Ed Engl, 44, 690, 10.1002/anie.200300639
RL Krauth-Siegel, 2007, The trypanothione system, Subcell Biochem, 44, 231, 10.1007/978-1-4020-6051-9_11
O Koch, 2013, Trypanosomatid Diseases, Molecular Routes to Drug Discovery
O Koch, 2013, Molecular Dynamics Reveal Binding Mode of Glutathionylspermidine by Trypanothione Synthetase, PLoS ONE, 8, e56788, 10.1371/journal.pone.0056788
RL Krauth-Siegel, 2008, Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism, Biochim Biophys Acta, 1780, 1236, 10.1016/j.bbagen.2008.03.006
RL Krauth-Siegel, 2012, Low Molecular Mass Antioxidants in Parasites, Antioxidants Redox Sign, 17, 583, 10.1089/ars.2011.4392
AH Fairlamb, 1992, Metabolism and functions of trypanothione in the Kinetoplastida, Ann Rev Microbiol, 46, 695, 10.1146/annurev.mi.46.100192.003403
J Tovar, 1996, Extrachromosomal, homologous expression of trypanothione reductase and its complementary mRNA in <italic>Trypanosoma cruzi</italic>, Nucleic Acids Res, 24, 2942, 10.1093/nar/24.15.2942
RP Hertzberg, 2000, High-throughput screening: new technology for the 21st century, Curr Opin Chem Biol, 4, 445, 10.1016/S1367-5931(00)00110-1
PM Selzer, 2000, Targed-based drug discovery for the development of novel antiinfectives, Int J Med Microbiol, 290, 191, 10.1016/S1438-4221(00)80090-9
RJ Marhöfer, 2011, Drug discovery and the use of computational approaches for infectious diseases, Future Med Chem, 3, 1011, 10.4155/fmc.11.60
AR Renslo, 2006, Drug discovery and development for neglected parasitic diseases, Nat Chem Biol, 2, 701, 10.1038/nchembio837
J Schröder, 2013, Docking-Based Virtual Screening of Covalently Binding Ligands: An Orthogonal Lead Discovery Approach, J Med Chem, 56, 1478, 10.1021/jm3013932
M Schaeffer, 2012, Identification of lead compounds targeting the cathepsin B-like enzyme of <italic>Eimeria tenella</italic>, Antimicrob Agents Chemother, 56, 1190, 10.1128/AAC.05528-11
Schröder J, Noack S, Marhöfer RJ, Mottram JC, Coombs GH, Selzer PM (2013) Identification of semicarbazones, thiosemicarbazones and triazine nitriles as inhibitors of <italic>Leishmania mexicana</italic> cysteine protease CPB. PLOS ONE <comment>doi: <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0077460" xlink:type="simple">10.1371/journal.pone.0077460</ext-link></comment>
C Naula, 2005, Protein kinases as drug targets in trypanosomes and Leishmania, Biochim Biophys Acta, 1754, 151, 10.1016/j.bbapap.2005.08.018
Fernández ML Suárez, 2012, High-Throughput Screening with the <italic>Eimeria tenella</italic> CDC2-related kinase2/cyclin complex EtCRK2/EtCYC3a, Microbiol, 158, 2262, 10.1099/mic.0.059428-0
K Engels, 2010, Inhibition of <italic>Eimeria tenella</italic> CDK-related Kinase 2: From Target Identification to Lead Compounds, Chem Med Chem, 5, 1259, 10.1002/cmdc.201000157
M Beig, 2013, Trypanosomatid Diseases, Molecular Routes to Drug Discovery
EM Jacoby, 1996, Crystal structure of the <italic>Trypanosoma cruzi</italic> trypanothione reductase.mepacrine complex, Proteins, 24, 73, 10.1002/(SICI)1097-0134(199601)24:1<73::AID-PROT5>3.0.CO;2-P
FX Sullivan, 1991, Cloning, sequencing, overproduction and purification of trypanothione reductase from <italic>Trypanosoma cruzi</italic>, Mol Biochem Parasit, 44, 145, 10.1016/0166-6851(91)90231-T
MA Comini, 2009, Preparative enzymatic synthesis of trypanothione and trypanothione analogues, Int J Parasitol, 39, 1059, 10.1016/j.ijpara.2009.05.002
T Schlecker, 2005, Substrate Specificity, Localization, and Essential Role of the Glutathione Peroxidase-type Tryparedoxin Peroxidases in Trypanosoma brucei, J Biol Chem, 250, 14385, 10.1074/jbc.M413338200
Pipeline Pilot. Accelrys, Inc., San Diego, USA (2014). Available: <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://accelrys.com/products/pipeline-pilot/" xlink:type="simple">http://accelrys.com/products/pipeline-pilot/</ext-link>. Accessed 4 August 2014.
2014, MACCS Keys
Molecular Operating Environment (MOE), 2010.10 (2010) Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7.
JB Baell, 2010, New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays, J Med Chem, 53, 2719, 10.1021/jm901137j
G Cruciani, 2000, Molecular Fields in Quantitative Structure-Permeation Releationships: the VolSurf Approach. J Mol Structure, THEOCHEM, 503, 17, 10.1016/S0166-1280(99)00360-7
F Fueller, 2012, High throughput screening against the peroxidase cascade of African trypanosomes identifies antiparasitic compounds that inactivate tryparedoxin, J Biol Chem, 287, 8792, 10.1074/jbc.M111.338285
E Persch, 2014, Binding to Large Enzyme Pockets: Small-Molecule Inhibitors of Trypanothione Reductase, Chem Med Chem, 9, 1880, 10.1002/cmdc.201402032
MC Jockers-Scherübel, 1998, Trypanothione reductase from <italic>Trypanosoma cruzi</italic>. Catalytic properties of the enzyme and inhibition studies with trypanocidal compounds, Eur J Biochem, 180, 267, 10.1111/j.1432-1033.1989.tb14643.x
DC Jones, 2010, Comparative structural, kinetic and inhibitor studies of <italic>Trypanosoma brucei</italic> trypanothione reductase with T. cruzi, Mol Biochem Parasitol, 169, 12, 10.1016/j.molbiopara.2009.09.002
RL Krauth-Siegel, 1991, Biochemical Protozoology
S Meiering, 2005, Inhibitors of <italic>Trypanosoma cruzi</italic> trypanothione reductase revealed by virtual screening and parallel synthesis, J Med Chem, 48, 4793, 10.1021/jm050027z
S Bonse, 1999, Inhibition of <italic>Trypanosoma cruzi</italic> trypanothione reductase by acridines: kinetic studies and structure-activity relationships, J Med Chem, 42, 5448, 10.1021/jm990386s
JH Zhang, 1999, A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays, J Biomol Screen, 4, 67, 10.1177/108705719900400206
SR Wilkinson, 2008, A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes, Proc Natl Acad Sci USA, 105, 5022, 10.1073/pnas.0711014105
MP Barrett, 2000, Uptake of the nitroimidazole drug megazol by African trypanosomes, Biochem Pharmacol, 59, 615, 10.1016/S0006-2952(99)00368-8
PubChem (2014) Chlorhexidine (CID 9552079), sections “Biomedical Effects and Tixicity” and “Biomolecular Interactions and Pathways”. Available: <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=9552079" xlink:type="simple">http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=9552079</ext-link>. Accessed 4 August 2014.
Patterson S, Wyllie S, Stojanovski L, Perry MR, Simeons FRC, Norval S, Osuna-Cabello M, de Rycker M, Read KD, Fairlamb AH (2013) The R enantiomer of the anti-tubercular drug PA-824 as a potential oral treatment for visceral leishmaniasis. Antimicrob Agents Chemother <comment>doi: <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://dx.doi.org/10.1128/AAC.00722-13" xlink:type="simple">10.1128/AAC.00722-13</ext-link></comment>
S Patterson, 2014, Nitro drugs for the treatment of trypanosomatid diseases: past, present, and future prospects, Trends Parasitol, 30, 289, 10.1016/j.pt.2014.04.003
M Kaiser, 2011, Antitrypanosomal Activity of Fexinidazole, a New Oral Nitroimidazole Drug Candidate for Treatment of Sleeping Sickness, Antimicrob Agents Chemother, 55, 5602, 10.1128/AAC.00246-11
A Tarral, 2014, Determination of an Optimal Dosing Regimen for Fexinidazole, a Novel Oral Drug for the Treatment of Human African Trypanosomiasis: First-in-Human Studies, Clin Pharmacokinet, 53, 565, 10.1007/s40262-014-0136-3
MT Bahia, 2012, Fexinidazole: A Potential New Drug Candidate for Chagas Disease, PLoS Negl Trop Dis, 6, e1870, 10.1371/journal.pntd.0001870