Truthful mechanism design for multidimensional scheduling via cycle monotonicity
Tài liệu tham khảo
Ahuja, 1993
Andelman, 2007, Truthful approximation mechanisms for scheduling selfish related machines, Theory Computing Systems, 40, 423, 10.1007/s00224-006-1316-9
Archer, A., 2004. Mechanisms for discrete optimization with rational agents. PhD thesis. Cornell University
Archer, A., Tardos, É., 2001. Truthful mechanisms for one-parameter agents. In: Proc. 42nd FOCS, pp. 482–491
Auletta, V., De-Prisco, R., Penna, P., Persiano, G., 2004. Deterministic truthful approximation mechanisms for scheduling related machines. In: Proc. 21st STACS, pp. 608–619
Bezáková, 2005, Allocating indivisible goods, ACM SIGecom Exchanges, 5, 11, 10.1145/1120680.1120683
Bikhchandani, 2006, Weak monotonicity characterizes deterministic dominant-strategy implementation, Econometrica, 74, 1109, 10.1111/j.1468-0262.2006.00695.x
Briest, P., Krysta, P., Vöcking, B., 2005. Approximation techniques for utilitarian mechanism design. In: Proc. 37th STOC, pp. 39–48
Christodoulou, G., Koutsoupias, E., Kovács, A., 2007a. Mechanism design for fractional scheduling on unrelated machines. In: Proc. 34th ICALP, pp. 40–52
Christodoulou, G., Koutsoupias, E., Vidali, A., 2007b. A lower bound for scheduling mechanisms. In: Proc. 18th SODA, pp. 1163–1170
Clarke, 1971, Multipart pricing of public goods, Public Choice, 8, 17, 10.1007/BF01726210
Ford, 1956, Maximal flow through a network, Can. J. Mathematics, 8, 399, 10.4153/CJM-1956-045-5
Goldberg, 1990, Solving minimum-cost flow problems by successive approximation, Mathematics Operations Res., 15, 430, 10.1287/moor.15.3.430
Groves, 1973, Incentives in teams, Econometrica, 41, 617, 10.2307/1914085
Gui, H., Muller, R., Vohra, R., 2004. Characterizing dominant strategy mechanisms with multi-dimensional types. Working paper
Hall, 1996, Approximation algorithms for scheduling
Kleinberg, 2006
Koutsoupias, E., Vidali, A., 2007. A 1+ϕ lower bound for truthful scheduling. In: Proc. 32nd MFCS, pp. 454–464
Kovács, A., 2005. Fast monotone 3-approximation algorithm for scheduling related machines. In: Proc. 13th ESA, pp. 616–627
Kumar, V., Marathe, M., Parthasarathy, S., Srinivasan, A., 2005. Approximation algorithms for scheduling on multiple machines. In: Proc. 46th FOCS, pp. 254–263
Lavi, R., Swamy, C., 2005. Truthful and near-optimal mechanism design via linear programming. In: Proc. 46th FOCS, pp. 595–604
Lavi, R., Mu'alem, A., Nisan, N., 2003. Towards a characterization of truthful combinatorial auctions. In: Proc. 44th FOCS, pp. 574–583
Lehmann, 2002, Truth revelation in approximately efficient combinatorial auctions, J. ACM, 49, 577, 10.1145/585265.585266
Lenstra, 1990, Approximation algorithms for scheduling unrelated parallel machines, Math. Programming, 46, 259, 10.1007/BF01585745
Lipton, R., Markakis, E., Mossel, E., Saberi, A., 2004. On approximately fair allocations of indivisible goods. In: Proc. 5th EC, pp. 125–131
McAfee, 1988, Multidimensional incentive compatibility and mechanism design, J. Econ. Theory, 46, 335, 10.1016/0022-0531(88)90135-4
Mu'alem, A., Schapira, M., 2007. Setting lower bounds on truthfulness. In: Proc. 18th SODA, pp. 1143–1152
Myerson, 1981, Optimal auction design, Mathematics Operations Res., 6, 58, 10.1287/moor.6.1.58
Nisan, 2001, Algorithmic mechanism design, Games Econ. Behav., 35, 166, 10.1006/game.1999.0790
Rochet, 1987, A necessary and sufficient condition for rationalizability in a quasilinear context, J. Math. Econ., 16, 191, 10.1016/0304-4068(87)90007-3
Rockafellar, 1972
Saks, M., Yu, L., 2005. Weak monotonicity suffices for truthfulness on convex domains. In: Proc. 6th EC, pp. 286–293
Schrijver, 1998
Shmoys, 1993, An approximation algorithm for the generalized assignment problem, Math. Programming, 62, 461, 10.1007/BF01585178
Vickrey, 1961, Counterspeculations, auctions, and competitive sealed tenders, J. Finance, 16, 8, 10.2307/2977633