Truth and definite truth
Tài liệu tham khảo
Caicedo, 1999, Quantifiers for reasoning with imperfect information and Σ11-logic, vol. 235, 17
Ebbinghaus, 1996
L. Henkin, Some remarks on infinitively long formulas, in: Infinitistic Methods, Pergamon Press, Oxford and PAN, Warsaw, 1961, pp. 167–183.
Hintikka, 1973, Quantifiers vs. quantification theory, Dialectica, 27, 329, 10.1111/j.1746-8361.1973.tb00624.x
Hintikka, 1996
Hintikka, 1989, Informational independence as a semantical phenomenon, 571
Hintikka, 1997, Game-theoretical semantics, 361
Hodges, 1997, Compositional semantics for a language with imperfect information, J. IGPL, 5, 539, 10.1093/jigpal/5.4.539
Hyttinen, 2000, Henkin quantifiers and the definability of truth, J. Philosophical Logic, 29, 507, 10.1023/A:1026533210855
Kripke, 1975, Outline of a theory of truth, J. Philosophy, 72, 690, 10.2307/2024634
Krynicki, 1993, Hierarchies of finite partially ordered connectives and quantifiers, Math. Logic Quart., 39, 287, 10.1002/malq.19930390134
M. Krynicki, M. Mostowski, Henkin quantifiers, in: M. Krynicki, et al., (Eds.), Quantifiers: Logics, Models and Computation, vol. 1, Kluwer Academic Publishers, Dordrecht, 1995, pp. 193-262.
McGee, 1991
Sandu, 1993, On the logic of informational independence and its applications, J. Philosophical Logic, 22, 29, 10.1007/BF01049180
Sandu, 1998, IF-logic and truth-definition, J. Philosophical Logic, 27, 143, 10.1023/A:1017905122049
Sandu, 1992, Partially ordered connectives, Math. Logik Grundlagen Math., 38, 361, 10.1002/malq.19920380134
Walkoe, 1970, Finite partially ordered quantification, J. Symbolic Logic, 35, 535, 10.2307/2271440