Truth and definite truth

Annals of Pure and Applied Logic - Tập 126 - Trang 49-55 - 2004
Tapani Hyttinen1, Gabriel Sandu2
1Department of Mathematics, University of Helsinki, P.O. Box 4, Helsinki 00014, Finland
2Department of Philosophy, University of Helsinki, P.O. Box 9, Helsinki 00014, Finland

Tài liệu tham khảo

Caicedo, 1999, Quantifiers for reasoning with imperfect information and Σ11-logic, vol. 235, 17 Ebbinghaus, 1996 L. Henkin, Some remarks on infinitively long formulas, in: Infinitistic Methods, Pergamon Press, Oxford and PAN, Warsaw, 1961, pp. 167–183. Hintikka, 1973, Quantifiers vs. quantification theory, Dialectica, 27, 329, 10.1111/j.1746-8361.1973.tb00624.x Hintikka, 1996 Hintikka, 1989, Informational independence as a semantical phenomenon, 571 Hintikka, 1997, Game-theoretical semantics, 361 Hodges, 1997, Compositional semantics for a language with imperfect information, J. IGPL, 5, 539, 10.1093/jigpal/5.4.539 Hyttinen, 2000, Henkin quantifiers and the definability of truth, J. Philosophical Logic, 29, 507, 10.1023/A:1026533210855 Kripke, 1975, Outline of a theory of truth, J. Philosophy, 72, 690, 10.2307/2024634 Krynicki, 1993, Hierarchies of finite partially ordered connectives and quantifiers, Math. Logic Quart., 39, 287, 10.1002/malq.19930390134 M. Krynicki, M. Mostowski, Henkin quantifiers, in: M. Krynicki, et al., (Eds.), Quantifiers: Logics, Models and Computation, vol. 1, Kluwer Academic Publishers, Dordrecht, 1995, pp. 193-262. McGee, 1991 Sandu, 1993, On the logic of informational independence and its applications, J. Philosophical Logic, 22, 29, 10.1007/BF01049180 Sandu, 1998, IF-logic and truth-definition, J. Philosophical Logic, 27, 143, 10.1023/A:1017905122049 Sandu, 1992, Partially ordered connectives, Math. Logik Grundlagen Math., 38, 361, 10.1002/malq.19920380134 Walkoe, 1970, Finite partially ordered quantification, J. Symbolic Logic, 35, 535, 10.2307/2271440