Truncation of the transcriptional repressor protein Cre1 in Trichoderma reesei Rut-C30 turns it into an activator

Alice Rassinger1, Agnieszka Gacek‐Matthews2, Joseph Strauss2, Robert L. Mach1, Astrid R. Mach-Aigner1
1Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
2Fungal Genetics and Genomics Lab, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Str. 24, 3430, Tulln/Donau, Austria

Tóm tắt

Từ khóa


Tài liệu tham khảo

Singh A, Mishra P. Overview of problems and potential. In: Microbial pentose utilization—current applications in biotechnology. vol. 33; 1995. p. 1–3.

Kumar R, Singh S, Singh OV. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol. 2008;35(5):377–91.

Singh A, Mishra P. Extraction of pentosans from lignocellulosic materials. In: Microbial pentose utilization—current applications in biotechnology. vol. 33; 1995. p. 71–98.

Aro NPT, Penttilä M. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev. 2005;29:719–39.

Ivanova C, Bââth JA, Seiboth B, Kubicek CP. Systems analysis of lactose metabolism in Trichoderma reesei identifies a lactose permease that is essential for cellulase induction. PLoS ONE. 2013;8(5):e62631.

Mach-Aigner AR, Pucher ME, Mach RL. D-Xylose as a repressor or inducer of xylanase expression in Hypocrea jecorina (Trichoderma reesei). Appl Environ Microbiol. 2010;76(6):1770–6.

Strauss J, Mach RL, Zeilinger S, Hartler G, Stoffler G, Wolschek M, et al. Cre1, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett. 1995;376(1–2):103–7.

Nakari-Setälä T, Paloheimo M, Kallio J, Vehmaanperä J, Penttilä M, Saloheimo M. Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Appl Environ Microbiol. 2009;75(14):4853–60.

Mach RL, Strauss J, Zeilinger S, Schindler M, Kubicek CP. Carbon catabolite repression of xylanase I (xyn1) gene expression in Trichoderma reesei. Mol Microbiol. 1996;21(6):1273–81.

Portnoy T, Margeot A, Linke R, Atanasova L, Fekete E, Sandor E, et al. The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics. 2011;12:269.

Ries L, Belshaw NJ, Ilmén M, Penttilä ME, Alapuranen M, Archer DB. The role of CRE1 in nucleosome positioning within the cbh1 promoter and coding regions of Trichoderma reesei. Appl Microbiol Biotechnol. 2014;98(2):749–62.

Stricker AR, Grosstessner-Hain K, Würleitner E, Mach RL. Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell. 2006;5(12):2128–37.

Mach-Aigner AR, Pucher ME, Steiger MG, Bauer GE, Preis SJ, Mach RL. Transcriptional regulation of xyr1, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Appl Environ Microbiol. 2008;74(21):6554–62.

Montenecourt BS, Eveleigh DE. Production and characteriation of high yielding cellulase mutants of Trichoderma reesei. TAPPI J. 1979;28:101–8.

Ward M. Improving secreted enzyme production by Trichoderma reesei. In: 9th International workshop on Trichoderma and Gliocladium: 2006; Vienna.

Ilmén M, Thrane C, Penttilä M. The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol Gen Genetics. 1996;251(4):451–60.

Mello-de-Sousa TM, Gorsche R, Rassinger A, Pocas-Fonseca MJ, Mach RL, Mach-Aigner AR. A truncated form of the Carbon catabolite repressor 1 increases cellulase production in Trichoderma reesei. Biotechnol Biofuels. 2014;7(1):129.

Seiboth B, Gamauf C, Pail M, Hartl L, Kubicek CP. The D-xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and D-galactose catabolism and necessary for beta-galactosidase and cellulase induction by lactose. Mol Microbiol. 2007;66(4):890–900.

Stricker AR, Steiger MG, Mach RL. Xyr1 receives the lactose induction signal and regulates lactose metabolism in Hypocrea jecorina. FEBS Lett. 2007;581(21):3915–20.

Cziferszky A, Mach RL, Kubicek CP. Phosphorylation positively regulates DNA binding of the carbon catabolite repressor Cre1 of Hypocrea jecorina (Trichoderma reesei). J Biol Chem. 2002;277(17):14688–94.

Lichius A, Seidl-Seiboth V, Seiboth B, Kubicek CP. Nucleo-cytoplasmic shuttling dynamics of the transcriptional regulators XYR1 and CRE1 under conditions of cellulase and xylanase gene expression in Trichoderma reesei. Mol Microbiol. 2014;94(5):1162–78.

Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, et al. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J. 1995;14(4):779–90.

Cánovas D, Studt L, Marcos AT, Strauss J. High-throughput format for the phenotyping of fungi on solid substrates. Sci Rep. 2017;7:4289.

Sun J, Glass LN. Identification of the CRE-1 cellulotytic regulon in Neurospora crassa. PLoS ONE. 2011;6(9):e25654.

dos Santos Castro L, Pedersoli WR, Antonieto AC, Steindorff AS, Silva-Rocha R, Martinez-Rossi NM, et al. Comparative metabolism of cellulose, sophorose and glucose in Trichoderma reesei using high-throughput genomic and proteomic analyses. Biotechnol Biofuels. 2014;7(1):41.

Derntl C, Gudynaite-Savitch L, Calixte S, White T, Mach RL, Mach-Aigner AR. Mutation of the Xylanase regulator 1 causes a glucose blind hydrolase expressing phenotype in industrially used Trichoderma strains. Biotechnol Biofuels. 2013;6(1):62.

NetNES 1.1 Server. http://www.cbs.dtu.dk/services/NetNES/ . Accessed 31 May 2017.

Ries L, Beattie SR, Espeso EA, Cramer RA, Goldman GH. Diverse Regulation of CreA Carbon Catabolite Repressor in Aspergillus nidulans. Genetics. 2016;203(1):335–52.

Ries L, Belshaw NJ, Ilmén M, Penttilä ME, Alapuranen M, Archer DB. The role of CRE1 in nucleosome positioning within the cbh1 promoter and coding regions of Trichoderma reesei. Appl Microbiol Biotechnol. 2014;98(2):749–62.

Zeilinger S, Schmoll M, Pail M, Mach RL, Kubicek CP. Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction. Mol Genet Genomics. 2003;270(1):46–55.

Steiger MG, Vitikainen M, Uskonen P, Brunner K, Adam G, Pakula T, et al. Transformation system for Hypocrea jecorina (Trichoderma reesei) that favors homologous integration and employs reusable bidirectionally selectable markers. Appl Environ Microbiol. 2011;77(1):114–21.

Mach RL, Schindler M, Kubicek CP. Transformation of Trichoderma reesei based on hygromycin B resistance using homologous expression signals. Curr Genet. 1994;25(6):567–70.

Derntl C, Kiesenhofer DP, Mach RL, Mach-Aigner AR. Novel strategies for genomic manipulation of Trichoderma reesei with the purpose of strain engineering. Appl Environ Microbiol. 2015;81(18):6314–23.

Gruber F, Visser J, Kubicek CP, de Graaff LH. Cloning of the Trichoderma reesei pyrG gene and its use as a homologous marker for a high-frequency transformation system. Curr Genet. 1990;18(5):447–51.

Steiger MG, Mach RL, Mach-Aigner AR. An accurate normalization strategy for RT-qPCR in Hypocrea jecorina (Trichoderma reesei). J Biotechnol. 2010;145(1):30–7.

JGI Trichoderma reesei v2.0 Genome Database. http://genome.jgi.doe.gov/Trire2/Trire2.home.html . Accessed 28 April 2014.

JGI Trichoderma reesei Rut C-30 v1.0 Genome Database. http://genome.jgi.doe.gov/TrireRUTC30_1/TrireRUTC30_1.home.html . Accessed 28 April 2014.

NCBI Conserved Domain Search. http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi . Accessed 01 June 2014.

Clustal Omega. http://www.ebi.ac.uk/Tools/msa/clustalo/ . Accessed 13 June 2017.

cNLS Mapper. http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi . Accessed 08 September 2014.

Nine Amino Acids Transactivation Domain (9aaTAD) Prediction Tool. http://www.med.muni.cz/9aaTAD/ . Accessed 25 May 2017.

Piskacek S, Gregor M, Nemethova M, Grabner M, Kovarik P, Piskacek M. Nine-amino-acid transactivation domain: establishment and prediction utilities. Genomics. 2007;89(6):756–68.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

Lando D, Endesfelder U, Berger H, Subramanian L, Dunne PD, McColl J, et al. Quantitative single-molecule microscopy reveals that CENP-ACnp1 depostiton occurs during G2 in fission yeast. Open Biol. 2012;2(7):120078.

Mello-de-Sousa TM, Rassinger A, Derntl C, Poças-Fonseca MJ, Mach-Aigner AR, Mach RL. The relation between chromatin status, Xyr1 and cellulase expression in Trichoderma reesei. Curr Genomics. 2016;17:1–8.

Mello-de-Sousa TM, Rassinger A, Pucher ME, dos Santos Castro L, Persinoti GF, Silva-Rocha R, et al. The impact of chromatin remodelling on cellulase expression in Trichoderma reesei. BMC Genomics. 2015;16:588.