Troponin I as a Biomarker for Early Detection of Acute Myocardial Infarction

Current Problems in Cardiology - Tập 48 - Trang 101067 - 2023
L.C. Duque-Ossa1, B. García-Ferrera1, J.A. Reyes-Retana1
1Tecnologico de Monterrey, Department of Mechanics and Advanced Materials, Campus Santa Fe And Estado de Mexico, Mexico

Tài liệu tham khảo

Agewall, 2011, Troponin elevation in coronary vs. non-coronary disease, Eur Heart J, 32, 404, 10.1093/eurheartj/ehq456 Westermann, 2017, High-sensitivity assays for troponin in patients with cardiac disease, Nat Rev Cardiol, 14, 472, 10.1038/nrcardio.2017.48 Fathil, 2015, Diagnostics on acute myocardial infarction: Cardiac troponin biomarkers, Biosensors andBioelectronics, 70, 209, 10.1016/j.bios.2015.03.037 Catarino, 2020, Challenges and perspectives on biosensors for highhighly sensitive quantification of salivary troponins: a review, IEEE Sens J, 21, 13976, 10.1109/JSEN.2020.3004239 Zhou, 2018, Ultrasensitive label-free optical microfiber coupler biosensor for detection of cardiac troponin i based on interference turning point effect, Biosens Bioelectron, 106, 99, 10.1016/j.bios.2018.01.061 Pouleur, 2015, Which biomarkers do clinicians need for diagnosis and management of heart failure with reduced ejection fraction?, Clin Chim Acta, 443, 9, 10.1016/j.cca.2014.10.046 Townsend, 2016, Cardiovascular disease in europe: epidemiological update 2016, Eur Heart J, 37, 3232, 10.1093/eurheartj/ehw334 van Kimmenade, 2012, Emerging biomarkers in heart failure, Clin Chem, 58, 127, 10.1373/clinchem.2011.165720 Januzzi, 2012, Troponin elevation in patients with heart failure: on behalf of the third universal definition of myocardial infarction global task force: Heart failure section, Eur Heart J, 33, 2265, 10.1093/eurheartj/ehs191 Shah, 2015, Sensitive troponin assay and the classification of myocardial infarction, Am J Med, 128, 493, 10.1016/j.amjmed.2014.10.056 Sherwood, 2014, High-sensitivity troponin assays: Evidence, indications, and reasonable use, J Am Heart Assoc, 3, 1, 10.1161/JAHA.113.000403 Tanindi, 2011, Troponin elevation in conditions other than acute coronary syndrome, Vasc Health Risk Manag, 7, 597, 10.2147/VHRM.S24509 Bingisser, 2012, Cardiac troponin: a critical review of the case for point-of-care testing in the ED, American Journal of Emergency Medicine, 30, 1639, 10.1016/j.ajem.2012.03.004 Jaffe, 2012, Troponin-past, present, and future, Curr Probl Cardiol, 37, 209, 10.1016/j.cpcardiol.2012.02.002 Omland, 2013, Prognostic value of cardiac troponin i measured with a highly sensitive assay in patients with stable coronary artery disease, J Am Coll Cardiol, 61, 1240, 10.1016/j.jacc.2012.12.026 Neumann, 2019, Application of high-sensitivity troponin in suspected myocardial infarction, N Engl J Med, 380, 2529, 10.1056/NEJMoa1803377 Reichlin, 2012, Introduction of high-sensitivity troponin assays: Impact on myocardial infarction incidence and prognosis, Am J Med, 125, 1206, 10.1016/j.amjmed.2012.07.015 Han, 2016, Recent development of cardiac troponin i detection, ACS Sensors, 1, 106, 10.1021/acssensors.5b00318 Zhang, 2014, Label-free detection of cardiac troponin i with a photonic crystal biosensor, Biosens Bioelectron, 58, 107, 10.1016/j.bios.2014.02.057 Mair, 2018, How is cardiac troponin released from injured myocardium?, European Heart Journal: Acute Cardiovascular Care, 7, 553 Zhang, 2014, Electrochemical biosensors for the determination of cardiovascular markers: a review, Electroanalysis, 26, 1132, 10.1002/elan.201300597 Reyes-Retana, 2020, Acute myocardial infarction biosensor: a review from bottom up, Curr Probl Cardiol, 46, 100739, 10.1016/j.cpcardiol.2020.100739 Liu, 2016, Nanocomposites of gold nanoparticles and graphene oxide towards an stable label-free electrochemical immunosensor for detection of cardiac marker troponin-i, Anal Chim Acta, 909, 1, 10.1016/j.aca.2015.12.023 Wu, 2017, Hollow gold nanoparticle-enhanced SPR based sandwich immunoassay for human cardiac troponin i, Microchim Acta, 184, 2395, 10.1007/s00604-017-2245-9 Abdorahim, 2016, Nanomaterials-based electrochemical immunosensors for cardiac troponin recognition: An illustrated review, Trends in Analytical Chemistry, 82, 337, 10.1016/j.trac.2016.06.015 Blankenberg, 2016, Troponin i and cardiovascular risk prediction in the general population: the biomarcaRE consortium, Eur Heart J, 37, 2428, 10.1093/eurheartj/ehw172 Bhatnagar, 2016, Ultrasensitive cardiac troponin i antibody based nanohybrid sensor for rapid detection of human heart attack, Int J Biol Macromol, 95, 505, 10.1016/j.ijbiomac.2016.11.037 Wang, 2020, One-step digital immunoassay for rapid and sensitive detection of cardiac troponin i, ACS Sensors, 5, 1126, 10.1021/acssensors.0c00064 Qureshi, 2012, Biosensors for cardiac biomarkers detection: A review, Sens Actuators, B, 171–172, 62, 10.1016/j.snb.2012.05.077 Nezami, 2018, Nanomaterial-based biosensors and immunosensors for quantitative determination of cardiac troponins, J Pharm Biomed Anal, 159, 425, 10.1016/j.jpba.2018.07.031 Hammarsten, 2018, Possible mechanisms behind cardiac troponin elevations, Biomarkers, 23, 725, 10.1080/1354750X.2018.1490969 Hallén, 2012, Troponin for the estimation of infarct size: What have we learned?, Cardiology, 121, 204, 10.1159/000337113 Mahajan, 2011, How to interpret elevated cardiac troponin levels, Circulation, 124, 2350, 10.1161/CIRCULATIONAHA.111.023697 Gresslien, 2016, Troponin and exercise, Int J Cardiol, 221, 609, 10.1016/j.ijcard.2016.06.243 Katrukha, 2013, Human cardiac troponin complex. structure and functions, Biochemistry, 78, 1447 Marston, 2020, Troponin structure and function: a view of recent progress, J Muscle Res Cell Motil, 41, 71, 10.1007/s10974-019-09513-1 Apple1, 2011, Analytical characteristics of high-sensitivity cardiac troponin assays, Clin Chem, 58, 54, 10.1373/clinchem.2011.165795 Welsh, 2019, Cardiac troponin t and troponin i in the general population, Circulation, 139, 2754, 10.1161/CIRCULATIONAHA.118.038529 Shan, 2013, Sensitive electrogenerated chemiluminescence peptide-based biosensor for the determination of troponin i with gold nanoparticles amplification, Gold Bull, 47, 57, 10.1007/s13404-013-0113-x Çimen, 2020, Detection of cardiac troponin-i by optic biosensors with immobilized anticardiac troponin-i monoclonal antibody, Talanta, 219, 1, 10.1016/j.talanta.2020.121259 Christenson, 2020, Enhancement of label-free biosensing of cardiac troponin i, Label-free Biomedical Imaging and Sensing (LBIS), 11251, 1 Brush, 2016, Troponin testing for clinicians, J Am Coll Cardiol, 68, 2365, 10.1016/j.jacc.2016.08.066 Apple, 2017, Cardiac troponin assays: Guide to understanding analytical characteristics and their impact on clinical care, Clin Chem, 63, 73, 10.1373/clinchem.2016.255109 Danese, 2016, An historical approach to the diagnostic biomarkers of acute coronary syndrome, Ann Transl Med, 4, 194, 10.21037/atm.2016.05.19 Upasham, 2018, Cardiac troponin biosensors: where are we now?, Adv Health Care Technol, 4, 1, 10.2147/AHCT.S138543 McKie, 2020, Defining high-sensitivity cardiac troponin concentrations in the community, Clin Chem, 59, 1099, 10.1373/clinchem.2012.198614 Keller, 2011, Serial changes in highly sensitive troponin i assay and early diagnosis of myocardial infarction, JAMA, 306, 2684, 10.1001/jama.2011.1896 Mills, 2011, Implementation of a sensitive troponin i assay and risk of recurrent myocardial infarction and death in patients with suspected acute coronary syndrome, JAMA, 305, 1210, 10.1001/jama.2011.338 Neumann, 2016, Diagnosis of myocardial infarction using a high-sensitivity troponin i 1-hour algorithm, JAMA Cardiology, 1, 397, 10.1001/jamacardio.2016.0695 Nagarajan, 2012, Prognostic value of cardiac troponin in chronic stable heart failure: a systematic review, Heart, 98, 1778, 10.1136/heartjnl-2012-301779 Reichlin, 2011, Utility of absolute and relative changes in cardiac troponin concentrations in the early diagnosis of acute myocardial infarction, Circulation, 124, 136, 10.1161/CIRCULATIONAHA.111.023937 Body, 2011, Rapid exclusion of acute myocardial infarction in patients with undetectable troponin using a high-sensitivity assay, J Am Coll Cardiol, 58, 1332, 10.1016/j.jacc.2011.06.026 Mair, 2018, Editor’s choice-what to do when you question cardiac troponin values, European Heart Journal: Acute Cardiovascular Care, 7, 577 Shah, 2015, High sensitivity cardiac troponin and the under-diagnosis of myocardial infarction in women: prospective cohort study, BJM, 350, 1 Gore, 2014, Age and sex-dependent upper reference limits for the high-sensitivity cardiac troponin t assay, J Am Coll Cardiol, 63, 1441, 10.1016/j.jacc.2013.12.032 Reiter, 2011, Early diagnosis of acute myocardial infarction in the elderly using more sensitive cardiac troponin assays, Eur Heart J, 32, 1379, 10.1093/eurheartj/ehr033 Regan, 2018, Point-of-care compatibility of ultra-sensitive detection techniques for the cardiac biomarker troponin i challenges and potential value, Biosensors, 8, 1, 10.3390/bios8040114 Ahmad, 2018, Deposition of nanomaterials: A crucial step in biosensor fabrication, Mater Today Commun, 17, 289, 10.1016/j.mtcomm.2018.09.024 Bakirhan, 2018, Recent progress on the sensitive detection of cardiovascular disease markers by electrochemical-based biosensors, J Pharm Biomed Anal, 159, 406, 10.1016/j.jpba.2018.07.021 Ehtesabi, 2020, Carbon nanomaterials for salivary-based biosensors: a review, Materials Today Chemistry, 17, 1, 10.1016/j.mtchem.2020.100342 Rahim, 2015, Can saliva proteins be used to predict the onset of acute myocardial infarction among high-risk patients?, Int J Med Sci, 12, 329, 10.7150/ijms.11280 Sabury, 2015, Graphene-gold nanoparticle composite: Application as a good scaffold for construction of glucose oxidase biosensor, Mater Sci Eng, C, 49, 297, 10.1016/j.msec.2015.01.018 Beitollahi, 2014, Nanostructured base electrochemical sensor for simultaneous quantification and voltammetric studies of levodopa and carbidopa in pharmaceutical products and biological samples, Electroanalysis, 26, 1090, 10.1002/elan.201400074 Molaakbari, 2014, Synthesis of zno nanorods and their application in the construction of a nanostructure-based electrochemical sensor for determination of levodopa in the presence of carbidopa, Analyst, 139, 4356, 10.1039/C4AN00138A Kour, 2020, Review-recent advances in carbon nanomaterials as electrochemical biosensors, J Electrochem Soc, 167, 1, 10.1149/1945-7111/ab6bc4 Purohit, 2020, Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis, Sensors International, 1, 1, 10.1016/j.sintl.2020.100040 Dhara, 2020, Review on electrochemical sensing strategies for c-reactive protein and cardiac troponin i detection, Microchem J, 156, 1, 10.1016/j.microc.2020.104857 Fathil, 2016, Progression in sensing cardiac troponin biomarker charge transductions on semiconducting nanomaterials, Anal Chim Acta, 935, 30, 10.1016/j.aca.2016.06.012 Negahdary, 2018, An aptamer-based biosensor for troponin i detection in diagnosis of myocardial infarction, Journal of Biomedical Physics and Engeenering, 8, 167 Negahdary, 2019, An electrochemical troponin i peptisensor using a triangular icicle-like gold nanostructure, Biochem Eng J, 151, 1, 10.1016/j.bej.2019.107326 Zhu, 2015, Electrochemical sensors and biosensors based on nanomaterials and nanostructures, Anal Chem, 87, 230, 10.1021/ac5039863 Cho, 2010, Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis, Biomater Res, 24, 1 Chi, 2019, Manganese doped cds sensitized graphene/cu2mos4 composite for the photoelectrochemical immunoassay of cardiac troponin i, Biosensors and Bioelectronic, 132, 1, 10.1016/j.bios.2019.02.048 Lee, 2019, Development of the troponin detection system based on the nanostructure, Micromachines (Basel), 10, 203, 10.3390/mi10030203 Fathil, 2017, Substrate-gate coupling in zno-FET biosensor for cardiac troponin idetection, Sens Actuators, B, 242, 1142, 10.1016/j.snb.2016.09.131 Pachauri, 2016, Biologically sensitive field-effect transistors: from ISFETs to nanoFETs, Essays Biochem, 60, 81, 10.1042/EBC20150009 Fathil, 2018, The zno-FET biosensor for cardiac troponin i, IOP Conf Series: Materials Science and Engineering, 318, 1 Chen, 2018, A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes, RSC Adv, 8, 28048, 10.1039/C8RA04205E Lim, 2016, Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: a review, RSC Adv, 6, 24995, 10.1039/C6RA00333H Saleh Ahammad, 2011, Electrochemical detection of cardiac biomarker troponin i at gold nanoparticle-modified ITO electrode by using open circuit potential, Int J Electrochem Sci, 6, 1906, 10.1016/S1452-3981(23)18155-7 Arshad, 2018, Field-effect transistor-integration with tio2 nanoparticles for sensing of cardiac troponin i biomarker, J Nanosci Nanotechnol, 18, 5283, 10.1166/jnn.2018.15419 Chekin, 2018, Sensitive electrochemical detection of cardiac troponin i in serum andsaliva by nitrogen-doped porous reduced graphene oxide electrode, Sens Actuators, B, 262, 180, 10.1016/j.snb.2018.01.215 Tuteja, 2014, Graphene-gated biochip for the detection of cardiac marker troponin i, Anal Chim Acta, 809, 148, 10.1016/j.aca.2013.11.047 Periyakaruppan, 2013, Label-free detection of cardiac troponin i using carbon nanofiber based nanoelectrode arrays, Anal Chem, 85, 3858, 10.1021/ac302801z Liu, 2016, Peptide functionalized gold nanoparticles with optimized particle size and concentration for colorimetric assay development:detection of cardiac troponin i, ACS Sensors, 1, 1416, 10.1021/acssensors.6b00493 Zuo, 2016, A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring cardiac troponin i (ctni) in the serum, Electroanalysis, 28, 2044, 10.1002/elan.201600059 Kazemi, 2016, Porous graphene oxide nanostructure as an excellent scaffold for label-free electrochemical biosensor: Detection of cardiac troponin i, Mater Sci Eng, C, 69, 447, 10.1016/j.msec.2016.07.005 Singal, 2015, Electroactive graphene-multi-walled carbon nanotube hybrid supported impedimetric immunosensor for the detection of human cardiac troponin-i, RSC Adv, 5, 74994, 10.1039/C5RA15449A Lee, 2012, Detection of cardiac biomarkers using single polyaniline nanowire-based conductometric biosensors, Biosensors, 2, 205, 10.3390/bios2020205 Cheng, 2011, Functionalized sno2 nanobelt field-effect transistor sensors for label-free detection of cardiac troponin, Biosens Bioelectron, 26, 4538, 10.1016/j.bios.2011.05.019 Bhalla, 2012, Gold nanoparticles mediated label-free capacitance detection of cardiac troponin i, Sens Actuators, B, 161, 761, 10.1016/j.snb.2011.11.029 Kim, 2016, Silicon nanowire biosensors for detection of cardiac troponin i (ctni) with high sensitivity, Biosens Bioelectron, 77, 695, 10.1016/j.bios.2015.10.008 Kong, 2012, Cmos-compatible, label-free silicon-nanowire biosensors to detect cardiac troponin i for acute myocardial infarction diagnosis, Biosens Bioelectron, 34, 267, 10.1016/j.bios.2012.02.019 Kutovyi, 2020, Highly sensitive and fast detection of c-reactive protein and troponin biomarkers using liquidgated single silicon nanowire biosensors, MRS Adv, 5, 835, 10.1557/adv.2020.60 Lakshmanakumar, 2019, Functionalized graphene quantum dot interfaced electrochemical detection of cardiac troponin i: An antibody free approach, Sci Rep, 9, 1, 10.1038/s41598-019-53979-5 Lee, 2019, Fabrication of troponin i biosensor composed of multi-functional DNA structure/au nanocrystal using electrochemical and localized surface plasmon resonance dual-detection method, Nanomaterials, 9, 1, 10.3390/nano9071000 Negahdary, 2017, Electrochemical aptasensing of human cardiac troponin i based on anarray of gold nanodumbbells-applied to early detection of myocardialinfarction, Sens Actuators, B, 252, 62, 10.1016/j.snb.2017.05.149 Sandil, 2018, Biofunctionalized tungsten trioxide-reduced graphene oxide nanocomposites for sensitive electrochemical immunosensing of cardiac biomarker, J Alloys Compd, 763, 102, 10.1016/j.jallcom.2018.04.293 Xiong, 2017, Development of cardiac troponin i electrochemical impedance immunosensor, Int J Electrochem Sci, 12, 4204, 10.20964/2017.05.22 Sarangadharan, 2018, High sensitivity cardiac troponin i detection in physiological environment using algan/gan high electron mobility transistor (HEMT) biosensors, Biosens Bioelectron, 100, 282, 10.1016/j.bios.2017.09.018 Jo, 2015, Electrochemical aptasensor of cardiac troponin i for the early diagnosis of acute myocardial infarction, Anal Chem, 87, 9869, 10.1021/acs.analchem.5b02312 Prajesh, 2021, Polysilicon field effect transistor biosensor for the detection of cardiac troponin-i (ctni), J Electrochem Soc, 168, 1, 10.1149/1945-7111/abdde6 Qiao, 2018, Novel electrochemical sensing platform for ultrasensitive detection of cardiac troponin i based on aptamer-mos2 nanoconjugates, Biosens Bioelectron, 113, 142, 10.1016/j.bios.2018.05.003 Rajesh, 2013, Label-free detection of cardiac troponin-i using gold nanoparticles functionalized single-walled carbon nanotubes based chemiresistive biosensor, Appl Phys Lett, 103, 1, 10.1063/1.4830223 Feng, 2012, Ultrasensitive multianalyte electrochemical immunoassay based on metal ion functionalized titanium phosphate nanospheres, Anal Chem, 84, 7810, 10.1021/ac301438v Jo, 2017, Highly sensitive amperometric detection of cardiac troponin i using sandwich aptamers and screen-printed carbon electrodes, Talanta, 165, 442, 10.1016/j.talanta.2016.12.091 Rezaei, 2018, An electrochemical immunosensor for cardiac troponin i using electrospun carboxylated multi- walled carbon nanotube - whiskered nanofibres, Talanta, 182, 178, 10.1016/j.talanta.2018.01.046 Ma, 2017, Mips-graphene nanoplatelets-mwcnts modified glassy carbon electrode for the determination of cardiac troponin i, Anal Biochem, 520, 9, 10.1016/j.ab.2016.12.018 Shen, 2014, Silicon-based multi-nanowire biosensor with high-k dielectric and stacked oxide sensing membrane for cardiac troponin i detection, Procedia Eng, 87, 648, 10.1016/j.proeng.2014.11.571 Shen, 2015, An enhancement of high-k/oxide stacked dielectric structure forsilicon-based multi-nanowire biosensor in cardiac troponin idetection, Sens Actuators, B, 218, 303, 10.1016/j.snb.2015.05.002 Singh, 2017, Microporous nanocomposite enabled microfluidic biochip for cardiac biomarker detection, ACS Applied Materials and Interfaces, 9, 33576, 10.1021/acsami.7b07590 Singh, 2019, Hollow-nanospheres-based microfluidic biosensors for biomonitoring of cardiac troponin i, J Mater Chem B, 7, 3826, 10.1039/C9TB00126C Suna, 2019, Electrochemical dual-aptamer-based biosensor for nonenzymatic detection of cardiac troponin i by nanohybrid electrocatalysts labeling combined with DNA nanotetrahedron structure, Biosens Bioelectron, 134, 49, 10.1016/j.bios.2019.03.049 AL-Shawafi, 2018, Developing sensitive golden coated biosensor for early detection of serum cardiac troponin i as diagnostic biomarkers, Preprints, 2018, 1 Wang, 2016, Label-free electrochemical impedance peptide-based biosensor for the detection of cardiac troponin i incorporating gold nanoparticlesmodified carbon electrode, J Electroanal Chem, 781, 212, 10.1016/j.jelechem.2016.08.005 Xu, 2017, Fabrication of an immunosensor for cardiac troponin i determination, Int J Electrochem Sci, 12, 7931, 10.20964/2017.09.65 Yola, 2018, Development of cardiac troponin-i biosensor based on boron nitride quantum dots including molecularly imprinted polymer, Biosens Bioelectron, 126, 418, 10.1016/j.bios.2018.11.016 Zhang, 2017, A sensitive electrochemiluminescence immunosensor for cardiac troponin i detection based on dual quenching of the self-enhanced ru(II) complex by folic acid and in situ generated oxygen, Sensors and Actuators B, 241, 765, 10.1016/j.snb.2016.10.138 Zhang, 2018, Electrochemical ultrasensitive detection of cardiac troponin i using covalent organic frameworks for signal amplification, Biosens Bioelectron, 119, 176, 10.1016/j.bios.2018.08.020 Pan, 2010, Single-walled carbon nanotubes as optical probes for bio-sensing and imaging, J Mater Chem B, 5, 6511, 10.1039/C7TB00748E Krishnan, 2019, A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors, RSC Adv, 9, 8778, 10.1039/C8RA09577A Taniselass, 2019, Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers, Biosens Bioelectron, 130, 276, 10.1016/j.bios.2019.01.047 Nsabimana, 2018, Nanomaterials-based electrochemical sensing of cardiac biomarkers for acute myocardial infarction: Recent progress, Electroanalysis, 30, 1 Kumar, 2015, Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare, Biosens Bioelectron, 70, 498, 10.1016/j.bios.2015.03.062 Solanki, 2011, Nanostructured metal oxide-based biosensors, NPG Asia Mater, 3, 17, 10.1038/asiamat.2010.137 Shanmugam, 2016, Electrochemical nanostructured zno biosensor for ultrasensitive detection of cardiac troponin-t, Nanomedicine, 11, 1345, 10.2217/nnm-2016-0048 Chen, 2011, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation, Nano Today, 6, 131, 10.1016/j.nantod.2011.02.001 Gupta, 2021, Sensitive impedimetric detection of troponin i with metal-organic framework composite electrode, RSC Adv, 11, 2167, 10.1039/D0RA06665F Bowman, 2019, Computational studies of cardiac and skeletal troponin, Front Mol Biosci, 6, 1, 10.3389/fmolb.2019.00068 Manning, 2012, Correlation of molecular and functional effects of mutations in cardiac troponin t linked to familial hypertrophic cardiomyopathy: an integrative in silico/in vitro approach, J Biol Chem, 287, 14515, 10.1074/jbc.M111.257436 Vetter, 2018, Tni structural interface with the n-terminal lobe of tnc as a determinant of cardiac contractility, Biophys J, 114, 1646, 10.1016/j.bpj.2018.02.015 Metskas, 2015, Conformation and dynamics of the troponin i c-terminal domain: combining single-molecule and computational approaches for a disordered protein region, J Am Chem Soc, 137, 11962, 10.1021/jacs.5b04471 Manning, 2011, A model of calcium activation of the cardiac thin filament, Biochemistry, 50, 7405, 10.1021/bi200506k Raouf, 2011, Thermodynamics investigation of ca2+ effect on troponin-c (tnc): A QM/MM study, Afr J Microbiol Res, 5, 2467