Tropical cyclone detection in South Pacific and Atlantic coastal area using optical flow estimation and RESNET deep learning model

Acta Geophysica - Tập 70 Số 6 - Trang 2855-2871
Nagu Malothu1, Varre Venkata Kanaka Durga Vara Prasad2, B. T. Krishna3
1JNTUK
2Department of ECE, Gudlavalleru engineering college, Gudlavalleru, Krishna (Dt), India
3Department of ECE, University College of Engineering, JNTUK, Kakinada, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bai CY, Chen BF, Lin HT (2020) Benchmarking tropical cyclone rapid intensification with satellite images and attention-based deep models. In: Joint European conference on machine learning and knowledge discovery in databases, pp 497–512. Springer

Chen B, Chen BF, Hsiao CM (2020) Cnn profiler on polar coordinate images for tropical cyclone structure analysis. arXiv preprint arXiv:2010.15158

Combinido JS, Mendoza JR, Aborot J (2018) A convolutional neural network approach for estimating tropical cyclone intensity using satellite-based infrared images. In: 2018 24th International conference on pattern recognition (ICPR), pp 1474–1480. IEEE

Del Portillo I, Cameron BG, Crawley EF (2019) A technical comparison of three low earth orbit satellite constellation systems to provide global broadband. Acta Astronautica 159:123–135

Drake J, Wiseman S (2018) Increasing incidence of dirofilaria immitis in dogs in usa with focus on the southeast region 2013–2016. Parasit vectors 11(1):1–7

Fudeyasu H, Hirose S, Yoshioka H, Kumazawa R, Yamasaki S (2014) A global view of the landfall characteristics of tropical cyclones. Trop Cyclone Res Rev 3(3):178–192

Geer AJ, Lonitz K, Weston P, Kazumori M, Okamoto K, Zhu Y, Liu EH, Collard A, Bell W, Migliorini S et al (2018) All-sky satellite data assimilation at operational weather forecasting centres. Q J R Meteorol Soc 144(713):1191–1217

Gualtieri L, Camargo SJ, Pascale S, Pons FM, Ekström G (2018) The persistent signature of tropical cyclones in ambient seismic noise. Earth Planet Sci Lett 484:287–294

Hsan TZ Sein MM (2019) Tropical cyclone determination using infrared satellite image. Dev Int J Trend Sci Res Dev 3:2464–2467

Hussain M, Chen D, Cheng A, Wei H, Stanley D (2013) Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS J Photogram Remote Sens 80:91–106

Joyce RJ, Xie P (2011) Kalman filter-based cmorph. J Hydrometeorol 12(6):1547–1563

Kar C, Kumar A, Banerjee S (2019) Tropical cyclone intensity detection by geometric features of cyclone images and multilayer perceptron. SN Appl Sci 1(9):1–7

Kolstad EW (2021) Prediction and precursors of idai and 38 other tropical cyclones and storms in the mozambique channel. Q J R Meteorol Soc 147(734):45–57

Park MS, Kim M, Lee MI, Im J, Park S (2016) Detection of tropical cyclone genesis via quantitative satellite ocean surface wind pattern and intensity analyses using decision trees. Remote Sens Environ 183:205–214

Poompavai V, Ramalingam M (2013) Geospatial analysis for coastal risk assessment to cyclones. J Indian Soc Remote Sens 41(1):157–176

Pradhan R, Aygun RS, Maskey M, Ramachandran R, Cecil DJ (2017) Tropical cyclone intensity estimation using a deep convolutional neural network. IEEE Trans Image Process 27(2):692–702

Thompson MP, Norris FH, Hanacek B (1993) Age differences in the psychological consequences of hurricane hugo. Psychol Aging 8(4):606

Wang P, Wang P, Wang C, Yuan Y, Wang D (2020) A center location algorithm for tropical cyclone in satellite infrared images. IEEE J Select Top Appl Earth Observ Remote Sens 13:2161–2172

Weinkle J, Landsea C, Collins D, Musulin R, Crompton RP, Klotzbach PJ, Pielke R (2018) Normalized hurricane damage in the continental united states 1900–2017. Nat Sustain 1(12):808–813

Zhang C, Durgan SD, Lagomasino D (2019) Modeling risk of mangroves to tropical cyclones: a case study of hurricane irma. Estuarine Coastal Shelf Sci 224:108–116

Zhang CJ, Luo Q, Dai LJ, Ma LM, Lu XQ (2019) Intensity estimation of tropical cyclones using the relevance vector machine from infrared satellite image data. IEEE J Select Top Appl Earth Observ Remote Sens 12(3):763–773