Triviality and Rigidity of Almost Riemann Solitons
Tóm tắt
In this paper, we study some triviality and rigidity results of Riemann soliton. First, we derive some sufficient conditions for which an almost Riemann soliton is trivial. In particular, we prove that any compact almost Riemann soliton with constant scalar curvature has constant sectional curvature. Next, we prove some rigidity results for gradient Riemann solitons. Precisely, we prove that a non-trivial gradient Riemann soliton is locally isometric to a warped product
$$( I \times F, \textrm{d}t^2 + f(t)^2g_{F})$$
, where
$$\nabla \sigma \ne 0$$
.
Từ khóa
Tài liệu tham khảo
Barros, A., Ribeiro, E., Jr.: Some characterizations for compact almost Ricci solitons. Proc. Am. Math. Soc. 140(3), 1033–1040 (2012)
Barros, A., Batista, R., Ribeiro, E., Jr.: Compact almost Ricci solitons with constant scalar curvature are gradient. Monatsh. Math. 174(1), 29–39 (2014)
Besse, A.: Einstein Manifolds. Springer, New York (2008)
Blaga, A.M.: Remarks on almost Riemann solitons with gradient or torse-forming vector field. Bull. Malays. Math. Sci. Soc. 44(5), 3215–3227 (2021)
Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Birkhauser, Boston (2002)
Brozos-Vázquez, M., Garcia-Rio, E., Vazquez-Lorenzo, R.: Complete locally conformally flat manifolds of negative curvature. Pac. J. Math. 226, 201–219 (2006)
Calvaruso, G., Perrone, D., Vanhecke, L.: Homogeneity of three-dimensional contact metric manifold. Isr. J. Math. 114, 301–321 (1999)
Calvino-Louzao, E., Fernandez-Lópeź, M., García-Río, G., Vázquez-Lorenzo, R.: Homogeneous Ricci almost solitons. Isr. J. Math. 220, 531–546 (2017)
Caminha, A., Souza, P., Camargo, F.: Complete foliations of space forms by hypersurfaces. Bull. Braz. Math. Soc. (N.S.) 41(3), 339–353 (2010)
Catino, G., Mazzieri, L.: Gradient Einstein solitons. Nonlinear Anal. 132, 66–94 (2016)
Chen, B.-Y.: Differential Geometry of Warped Product Manifolds and Submanifolds. World Scientific, Singapore (2017)
Chen, B.-Y., Yano, K.: Special conformally flat spaces and canal hypersurfaces. Tohoku Math. J. 25, 177–184 (1973)
Devaraja, M.N., Kumara, H.A., Venkatesha, V.: Riemann solitons within the framework of contact geometry. Quest. Math. 44(5), 637–651 (2021)
Ejiri, N.: A negative answer to a conjecture of conformal transformation of Riemannian manifolds. J. Math. Soc. Jpn. 33(2), 261–266 (1981)
Ghosh, A.: Ricci almost solitons satisfying certain conditions on the potential vector field. Publ. Math. Debrecen 87(1–2), 103–110 (2015)
Gouli-Andreou, F., Tsolakidou, N.: Conformally flat contact metric manifolds with \(Q\xi = \rho \xi \). Beitr. Algeb. Geom. 45, 103–115 (2004)
Hamilton, R.S.: The Ricci flow on surfaces. Contemp. Math. 71, 237–262 (1988)
Hiepko, S.: Eine innere Kennzeichnung der verzerrten Produkte. Math. Ann. 241(3), 209–215 (1979)
Hirica, I.E., Udriste, C.: Ricci and Riemann solitons. Balkan J. Geom. Appl. 21, 35–44 (2016)
Hamilton, R.S.: The Ricci flow on surfaces. Contemp. Math. 71, 237–262 (1988)
Hu, Y., Li, H., Wei, Y.: Locally constrained curvature flows and geometric inequalities in hyperbolic space. Math. Ann. 382, 1425–1474 (2022)
Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tohoku Math. J. 24(1), 93–103 (1972)
Nouhaud, O.: Transformations infinitesimales harmoniques. CR Acad. Paris Ser. A 274, 573–576 (1972)
Obata, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 14, 333–340 (1962)
Okumura, M.: On infinitesimal conformal and projective transformations of normal contact spaces. Tohoku Math. J. 2(14), 398–412 (1962)
O’Neill, B.: Semi-Riemannian Geometry with Applications to relativity. Academic Press, New York (1983)
Perelman, G.: The entropy formula for the Ricci flow and its geometric applications, Preprint. http://arXiv.orgabsmath.DG/02111159
Petersen, P.: Riemannian Geometry, vol. 171. Springer, Berlin (2006)
Petersen, P., Wylie, W.: Rigidity of gradient Ricci solitons. Pac. J. Math. 241, 329–345 (2009)
Pigola, S., Rigoli, M., Rimoldi, M., Setti, A.G.: Ricci almost solitons. Ann. Sc. Norm. Super. Pisa Cl. Sci. 10, 757–799 (2011)
Stepanov, S.E., Tsyganok, I.I.: The theory of infinitesimal harmonic transformations and its applications to the global geometry of Riemann solitons. Balk. J. Geom. Appl. 24, 113–121 (2019)
Stepanov, S.E., Shandra, I.G.: Geometry of infinitesimal harmonic transformations. Ann. Glob. Anal. Geom. 24, 291–299 (2003)
Schouten, J.A.: Ricci-Calculus. Springer, Berlin (1954)
Tanno, S.: Locally symmetric K-contact Riemannian manifolds. Proc. Jpn. Acad. 43, 581–583 (1967)
Tokura, W., Barboza, M.: Batista, rigidity results for Riemann and Schouten solitons. Mediterr. J. Math. 20, 112 (2023). https://doi.org/10.1007/s00009-023-02319-z
Venkatesha, V., Kumara, H.A., Devaraja, M.N.: Riemann solitons and almost Riemann solitons on almost Kenmotsu manifolds. Int. J. Geom. Meth. Mod. Phys. 17(7), 2050105 (2020)
Yano, K.: Integral Formulas in Riemannian Geometry, vol. 1. M. Dekker, New York (1970)
Yano, K., Kon, M.: Structures on Manifolds, Series in Pure Mathematics, vol. 3. World Scientific Pub. Co., Singapore (1984)