Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mở rộng trong không gian ba Hilbert: Các phép toán bán giới hạn trong thang không gian Hilbert
Tóm tắt
Lý thuyết mở rộng cho các phép toán đối xứng bán giới hạn được tổng quát hóa bằng cách bao gồm các phép toán hoạt động trong một ba không gian Hilbert. Chúng tôi tập trung vào trường hợp mà phép toán tối thiểu là tự đồng nhất về mặt thiết yếu trong không gian Hilbert cơ sở và xây dựng một họ các phép mở rộng tự đồng nhất của nó bên trong ba không gian. Tất cả các phép mở rộng như vậy có thể được mô tả bằng các điều kiện biên nhất định, và một đối tác tự nhiên của công thức giải quyết của Krein được thu được.
Từ khóa
#Không gian Hilbert #phép toán đối xứng #phép toán bán giới hạn #mở rộng #công thức giải quyết của Krein.Tài liệu tham khảo
N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Vol. I and II, Pitman, Boston, Mass.-London, 1981.
S. Albeverio, F. Gesztesy, R. Høegh-Krohn and H. Holden, Solvable Models in Quantum Mechanics, 2nd edition. With an appendix by Pavel Exner. AMS Chelsea Publishing, Providence, RI, 2005.
S. Albeverio and P. Kurasov, Rank one perturbations, approximations, and self-adjoint extensions, J. Funct. Anal. 148 (1997), 152–169.
S. Albeverio and P. Kurasov, Rank one perturbations of not semibounded operators, Integral Equations Operator Theory 27 (1997), 379–400.
S. Albeverio and P. Kurasov, Singular Perturbations of Differential Operators. Solvable Schrödinger Type Operators, Cambridge University Press, Cambridge, 2000.
A. Alonso and B. Simon, The Birman-Krein-Vishik theory of self-adjoint extensions of semibounded operators, J. Operator Theory 4 (1980), 251–270.
F. A. Beresin and L. D. Faddeev, A remark on Schrödinger equation with a singular potential, Sov. Math. Doklady 137 (1961), 1011–1014.
Yu. M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc., Providence, RI, 1968.
M. S. Birman, On the self-adjoint extensions of positive definite operators, Mat. Sb. (N.S.) 38(80) (1956), 431–456.
J. W. Calkin, Abstract symmetric boundary conditions, Trans. Amer. Math. Soc. 45 (1939), 369–442.
Yu. Demkov and V. Ostrovsky, Zero-range Potentials and their Applications in Atomic Physics, Plenum, New York, 1988.
A. Dijksma, P. Kurasov and Yu. Shondin, High order singular rank one perturbations of a positive operator, Integral Equations Operator Theory 53 (2005), 209–245.
A. Dijksma, H. Langer, A. Luger and Yu. Shondin, A factorization result for generalized Nevanlinna functions of the class \( \mathcal{N}_\kappa \), Integral Equations Operator Theory 36 (2000), 121–125.
A. Dijksma, H. Langer, Yu. Shondin and C. Zeinstra, Self-adjoint operators with inner singularities and Pontryagin spaces, in Operator Theory and Related Topics, vol. II, Biräuser, Basel, 2000, pp. 105–175.
A. Dijksma and Yu. Shondin, Singular point-like perturbations of the Laguerre operator in a Pontryagin space, in Operator Methods in Ordinary and Partial Differential Equations, Birkhäuser, Basel, 2002, pp. 141–18.
E. Fermi, Sul moto dei neutroni nelle sostanze idrogenate, Ricerca Scientifica, 7 (1936), 13–52, English translation in E. Fermi, Collected Papers, Vol. I, Italy 1921–1938, University of Chicago Press, Chicago, 1962, pp. 980–1016.
F. Gesztesy and B. Simon, Rank one perturbations at infinite coupling, J. Funct. Anal. 128 (1995), 245–252.
Yu. E. Karpeshina, Zero-range model of p-scattering by a potential well, Forschungsinstitut für Mathematik, ETH, Zürich, 1992, preprint.
A. Kiselev and B. Simon, Rank one perturbations with infinitesimal coupling, J Funct. Anal. 130 (1995), 345–356.
M. Krein, On Hermitian operators whose deficiency indices are 1, C. R. (Doklady) Acad. Sci. URSS (N.S.) 43 (1944), 323–326.
M. Krein, The theory of self-adjoint extensions of semibounded Hermitian transformations and its applications, I, Rec. Math. (Mat. Sb.) 20(62) (1947), 431–495.
P. Kurasov, \( \mathcal{H}_{ - n} \)-perturbations of self-adjoint operators and Krein’s resolvent formula, Integral Equations Operator Theory 45 (2003), 437–460.
P. Kurasov, Singular and supersingular perturbations: Hilbert space methods, in Spectral Theory of Schrödinger Operators, Amer. Math. Soc., Providence, RI, pp. 185–216.
P. Kurasov and A. Luger, Singular differential operator: Titchmarsh-Weyl coefficients and operator models, Report N8, Dept. of Math., Lund Univ., 2007.
P. Kurasov and K. Watanabe, On rank one \( \mathcal{H}_{ - 3} \)-perturbations of positive self-adjoint operators, in Stochastic Processes, Physics and Geometry: New Interplays, II, Amer. Math. Soc., Providence, 2000, pp. 413–422.
P. Kurasov and K. Watanabe, On \( \mathcal{H}_{ - 4} \)-perturbations of self-adjoint operators, in Partial Differential Equations and Spectral Theory, Birkhäuser, Basel, 2001, pp. 179–196.
J. von Neumann, Allgemeine Eigenwettheorie Hermitescher Funktionaloperatoren, Math. Ann. 102 (1929–30), 49–131.
B. Pavlov, The theory of extensions and explicitly solvable models, Uspekhi Mat. Nauk 42 (1987), 99–131.
B. Pavlov, Boundary conditions on thin manifolds and the semiboundedness of the three-body Schrödinger operator with point potential, Mat. Sb. (N.S.) 136(178) (1988), 163–177.
M. Reed and B. Simon, Methods of Modern Mathematical Physics II, Academic Press, New York, 1972.
B. Simon, Spectral analysis of rank one perturbations and applications, CRM Proceedings and Lecture Notes 8 (1995), 109–149.
M. Vishik, On general boundary condition for elliptic differential equation, Trudy Moskov. Mat. Obshch. 1 (1952), 187–246.