Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sơ đồ cảm biến ba tín hiệu dựa trên các cộng hưởng vi cơ phi tuyến
Tóm tắt
Trong vài thập kỷ qua, những tiến bộ trong hệ thống vi điện cơ (MEMS) đã tạo ra những thiết bị mạnh mẽ, chính xác và hiệu suất cao. Nhiều nghiên cứu đã được thực hiện để cải thiện khả năng chọn lọc và độ nhạy của cảm biến MEMS bằng cách điều chỉnh kích thước thiết bị và áp dụng các đặc tính phi tuyến. Tuy nhiên, việc cảm nhận nhiều tham số vẫn là một chủ đề thách thức. Ngoại trừ việc nghiên cứu hạn chế về cảm biến đa khí và đa chế độ, việc phát hiện nhiều tham số thường phụ thuộc vào việc kết hợp nhiều cảm biến MEMS tách biệt. Trong công trình này, một sơ đồ cảm biến ba tín hiệu mới thông qua các cộng hưởng phi tuyến yếu được giới thiệu, có thể phát hiện đồng thời ba kích thích vật lý khác nhau (bao gồm gia tốc dọc) bằng cách theo dõi phản ứng động của ba chế độ dao động thấp nhất. Mô hình dầm Euler–Bernoulli với phân discret Galerkin ba chế độ được sử dụng để suy diễn một mô hình bậc thấp hơn, cân nhắc các phi tuyến hình học và điện tĩnh, nhằm đặc trưng cho động lực học phi tuyến của cộng hưởng dưới ảnh hưởng của các kích thích khác nhau. Kết quả mô phỏng cho thấy tiềm năng của cộng hưởng kết nối phi tuyến trong việc thực hiện phát hiện ba tín hiệu đồng thời.
Từ khóa
#MEMS #cảm biến đa tham số #cộng hưởng phi tuyến #gia tốc dọc #động lực học phi tuyếnTài liệu tham khảo
Hajjaj, A.Z., Jaber, N., Ilyas, S., Alfosail, F.K., Younis, M.I.: Linear and nonlinear dynamics of micro and nano-resonators: review of recent advances. Int. J. Non-Linear Mech. 119, 103328 (2020). https://doi.org/10.1016/j.ijnonlinmec.2019.103328
Dastider, S.G., Abdullah, A., Jasim, I., Yuksek, N.S., Dweik, M., Almasri, M.: Low concentration E. coli O157:H7 bacteria sensing using microfluidic MEMS biosensor. Rev. Sci. Instrum. 89(12), 125009 (2018). https://doi.org/10.1063/1.5043424
Noi, K., Iwata, A., Kato, F., Ogi, H.: Ultrahigh-frequency, wireless mems qcm biosensor for direct, label-free detection of biomarkers in a large amount of contaminants. Anal. Chem. 91(15), 9398–9402 (2019). https://doi.org/10.1021/acs.analchem.9b01414
Gopinath, P.G., Anitha, V.R., Mastani, S.A.: Microcantilever based biosensor for disease detection applications. J. Med. Bioeng. 4(4), 307–311 (2015). https://doi.org/10.12720/jomb.4.4.307-311
Pengwang, E., Rabenorosoa, K., Rakotondrabe, M., Andreff, N.: Scanning micromirror platform based on MEMS technology for medical application. Micromachines 7(2), 24 (2016). https://doi.org/10.3390/mi7020024
Gafford, J., et al.: Toward medical devices with integrated mechanisms, sensors, actuators via printed-circuit MEMS. J. Med. Devices Trans. ASME (2017). https://doi.org/10.1115/1.4035375
Shikida, M., Hasegawa, Y., Al Farisi, M.S., Matsushima, M., Kawabe, T.: “Advancements in MEMS technology for medical applications: microneedles and miniaturized sensors. Jpn. J. Appl. Phys. 61, SA0803 (2022). https://doi.org/10.35848/1347-4065/ac305d5
Rahmani, M.: MEMS gyroscope control using a novel compound robust control. ISA Trans 72, 37–43 (2018). https://doi.org/10.1016/J.ISATRA.2017.11.009
Zhanshe, G., Fucheng, C., Boyu, L., Le, C., Chao, L., Ke, S.: Research development of silicon MEMS gyroscopes: a review. Microsyst. Technol. 21(10), 2053–2066 (2015). https://doi.org/10.1007/s00542-015-2645-x
Shao, X., Shi, Y.: Neural adaptive control for MEMS gyroscope with full-state constraints and quantized input. IEEE Trans. Industr. Inform. (2020). https://doi.org/10.1109/TII.2020.2968345
Christensen D. L. et al.: Hermetically encapsulated differential resonant accelerometer. In: 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), IEEE, Jun. 2013, pp. 606–609. doi: https://doi.org/10.1109/Transducers.2013.6626839.
Kim, B.-J., Kim, J.-S.: Gas sensing characteristics of MEMS gas sensor arrays in binary mixed-gas system. Mater. Chem. Phys. 138(1), 366–374 (2013). https://doi.org/10.1016/j.matchemphys.2012.12.002
Zotov, S.A., Simon, B.R., Trusov, A.A., Shkel, A.M.: High quality factor resonant MEMS accelerometer with continuous thermal compensation. IEEE Sens. J. 15(9), 5045–5052 (2015). https://doi.org/10.1109/JSEN.2015.2432021
Park, K., Kim, N., Morisette, D.T., Aluru, N.R., Bashir, R.: Resonant MEMS Mass Sensors for Measurement of Microdroplet Evaporation. J. Microelectromech. Syst. 21(3), 702–711 (2012). https://doi.org/10.1109/JMEMS.2012.2189359
Kiracofe, D., Raman, A.: Microcantilever dynamics in liquid environment dynamic atomic force microscopy when using higher-order cantilever eigenmodes. J. Appl. Phys. 108(3), 034320 (2010). https://doi.org/10.1063/1.3457143
Joshi, P., Kumar, S., Jain, V.K., Akhtar, J., Singh, J.: Distributed MEMS mass-sensor based on piezoelectric resonant micro-cantilevers. J. Microelectromech. Syst. 28(3), 382–389 (2019). https://doi.org/10.1109/JMEMS.2019.2908879
Kessler, Y., Liberzon, A., Krylov, S.: Flow velocity gradient sensing using a single curved bistable microbeam. J. Microelectromech. Syst. 29(5), 1020–1025 (2020). https://doi.org/10.1109/JMEMS.2020.3012690
Elshenety, A., El-Kholy, E.E., Abdou, A.F., Soliman, M.: H2S MEMS-based gas sensor. J. Micro. Nanolithogr. MEMS MOEMS 18(02), 1 (2019). https://doi.org/10.1117/1.JMM.18.2.025001
Asri, M.I.A., Hasan, M.N., Fuaad, M.R.A., Yunos, Y.M., Ali, M.S.M.: MEMS gas sensors: a review. IEEE Sens. J. 21(17), 18381–18397 (2021). https://doi.org/10.1109/JSEN.2021.3091854
Roessig T. A., Howe R. T., Pisano A. P., Smith J. H.: Surface-micromachined resonant accelerometer. In: Proceedings of International Solid State Sensors and Actuators Conference (Transducers ’97), IEEE, pp. 859–862. doi: https://doi.org/10.1109/SENSOR.1997.635237.
Zribi, A., Knobloch, A., Tian, W.-C., Goodwin, S.: Micromachined resonant multiple gas sensor. Sens. Actuators A. Phys. 122(1), 31–38 (2005). https://doi.org/10.1016/j.sna.2004.12.034
Choi, J.-S., Park, W.-T.: MEMS particle sensor based on resonant frequency shifting. Micro. Nano Syst. Lett. 8(1), 17 (2020). https://doi.org/10.1186/s40486-020-00118-9
Shi, H., Fan, S., Zhang, Y., Sun, J.: Nonlinear dynamics study based on uncertainty analysis in electro-thermal excited MEMS resonant sensor. Sens. Actuators A: Phys. 232, 103–114 (2015). https://doi.org/10.1016/j.sna.2015.05.016
Spletzer, M., Raman, A., Wu, A.Q., Xu, X., Reifenberger, R.: Ultrasensitive mass sensing using mode localization in coupled microcantilevers. Appl. Phys. Lett. 88(25), 254102 (2006). https://doi.org/10.1063/1.2216889
Chatani K., Wang D. F., Ikehara T., Maeda R.: Vibration mode localization in coupled beam-shaped resonator array. In: 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), IEEE, 2012, pp. 69–72. doi: https://doi.org/10.1109/NEMS.2012.6196725.
Alneamy, A.M., Ouakad, H.M.: Investigation into mode localization of electrostatically coupled shallow microbeams for potential sensing applications. Micromachines (Basel) 13(7), 989 (2022). https://doi.org/10.3390/mi13070989
Ruzziconi, L., Lenci, S., Younis, M.I.: An imperfect microbeam under an axial load and electric excitation: nonlinear phenomena and dynamical integrity. Int. J. Bifurc. Chaos 23(02), 1350026 (2013). https://doi.org/10.1142/S0218127413500260
Ruzziconi, L., Jaber, N., Kosuru, L., Bellaredj, M.L., Younis, M.I.: Two-to-one internal resonance in the higher-order modes of a MEMS beam: Experimental investigation and theoretical analysis via local stability theory. Int. J. Non Linear Mech. 129, 103664 (2021). https://doi.org/10.1016/j.ijnonlinmec.2020.103664
Cho, H., Yu, M.-F., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: Tunable, broadband nonlinear nanomechanical resonator. Nano Lett. 10(5), 1793–1798 (2010). https://doi.org/10.1021/nl100480y
Hajjaj, A.Z., Jaber, N., Alcheikh, N., Younis, M.I.: A resonant gas sensor based on multimode excitation of a buckled microbeam. IEEE Sens. J. 20(4), 1778–1785 (2020). https://doi.org/10.1109/JSEN.2019.2950495
Jaber, N., Ilyas, S., Shekhah, O., Eddaoudi, M., Younis, M.I.: Multimode MEMS resonator for simultaneous sensing of vapor concentration and temperature. IEEE Sens. J. 18(24), 10145–10153 (2018). https://doi.org/10.1109/JSEN.2018.2872926
Yaqoob, U., Lenz, W.B., Alcheikh, N., Jaber, N., Younis, M.I.: Highly selective multiple gases detection using a thermal-conductivity-based MEMS resonator and machine learning. IEEE Sens. J. 22, 1–1 (2022). https://doi.org/10.1109/JSEN.2022.3203816
Homeijer B. et al.: Hewlett packard’s seismic grade MEMS accelerometer. In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2011, pp. 585–588. doi: https://doi.org/10.1109/MEMSYS.2011.5734492.
Milligan D. J., Homeijer B. D., Walmsley R. G.: An ultra-low noise MEMS accelerometer for seismic imaging. In: Proceedings of IEEE Sensors, 2011, pp. 1281–1284. doi: https://doi.org/10.1109/ICSENS.2011.6127185.
Zandi K., Wong B., Zou J., Kruzelecky R. V., Jamroz W., Peter Y. A.: In-plane silicon-on-insulator optical MEMS accelerometer using waveguide Fabry-Perot microcavity with silicon/air bragg mirrors. In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2010, pp. 839–842. doi: https://doi.org/10.1109/MEMSYS.2010.5442337.
Ahmadian, M., Jafari, K., Sharifi, M.J.: Novel graphene-based optical MEMS accelerometer dependent on intensity modulation. ETRI J. 40(6), 794–801 (2018). https://doi.org/10.4218/etrij.2017-0309
Zou X., Seshia A. A.: A high-resolution resonant MEMS accelerometer. In: 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2015, Institute of Electrical and Electronics Engineers Inc., 2015, pp. 1247–1250. doi: https://doi.org/10.1109/TRANSDUCERS.2015.7181156.
Mustafazade, Arif, et al.: A vibrating beam MEMS accelerometer for gravity and seismic measurements. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-67046-x
Zhang, H., Li, B., Yuan, W., Kraft, M., Chang, H.: An acceleration sensing method based on the mode localization of weakly coupled resonators. J. Microelectromech. Syst. 25(2), 286–296 (2016). https://doi.org/10.1109/JMEMS.2015.2514092
Kou, H., Tan, Q., Wang, Y., Zhang, G., Su, S., Xiong, J.: A wireless slot-antenna integrated temperature-pressure-humidity sensor loaded with CSRR for harsh-environment applications. Sens. Actuators B. Chem. 311, 127907 (2020). https://doi.org/10.1016/j.snb.2020.127907
Demanega, I., Mujan, I., Singer, B.C., Anđelković, A.S., Babich, F., Licina, D.: Performance assessment of low-cost environmental monitors and single sensors under variable indoor air quality and thermal conditions. Build. Environ. 187, 107415 (2021). https://doi.org/10.1016/j.buildenv.2020.107415
Kenry, J. C. Yeo, Lim C. T.: Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst. Nanoeng. 2016. doi: https://doi.org/10.1038/micronano.2016.43.
C. L. Roozeboom et al.: Multifunctional integrated sensor in A 2×2 mm epitaxial sealed chip operating in a wireless sensor node. In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Institute of Electrical and Electronics Engineers Inc., 2014, pp. 773–776. doi: https://doi.org/10.1109/MEMSYS.2014.6765755.
Roozeboom, C.L., et al.: Multifunctional integrated sensors for multiparameter monitoring applications. J. Microelectromech. Syst. 24(4), 810–821 (2015). https://doi.org/10.1109/JMEMS.2014.2349894
Thai, N.X., Tonezzer, M., Masera, L., Nguyen, H., van Duy, N., Hoa, N.D.: Multi gas sensors using one nanomaterial, temperature gradient, and machine learning algorithms for discrimination of gases and their concentration. Anal. Chim. Acta. 1124, 85–93 (2020). https://doi.org/10.1016/j.aca.2020.05.015
Kanaparthi, S., Singh, S.G.: Discrimination of gases with a single chemiresistive multi-gas sensor using temperature sweeping and machine learning. Sens. Actuators B. Chem. 348, 130725 (2021). https://doi.org/10.1016/j.snb.2021.130725
Kang, M., et al.: High accuracy real-time multi-gas identification by a batch-uniform gas sensor array and deep learning algorithm. ACS Sens. 7(2), 430–440 (2022). https://doi.org/10.1021/acssensors.1c01204
Potyrailo, R.A., et al.: Multi-gas sensors for enhanced reliability of SOFC operation. ECS Trans. 91(1), 319–328 (2019). https://doi.org/10.1149/09101.0319ecst
Zhao, W., Alcheikh, N., Khan, F., Yaqoob, U., Younis, M.I.: Simultaneous gas and magnetic sensing using a single heated micro-resonator. Sens. Actuators A. Phys. 344, 113688 (2022). https://doi.org/10.1016/j.sna.2022.113688
Shoaib, M., Hisham, N., Basheer, N., Tariq, M.: Frequency and displacement analysis of electrostatic cantilever-based MEMS sensor. Analog Integr. Circ. Signal Process 88(1), 1–11 (2016). https://doi.org/10.1007/s10470-016-0695-3
Maroufi, M., Alemansour, H., Moheimani, S.O.R.: A high dynamic range closed-loop stiffness-adjustable MEMS force sensor. J. Microelectromech. Syst. 29(3), 397–407 (2020). https://doi.org/10.1109/JMEMS.2020.2983193
Duan, J., et al.: Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energy Rev. 3(1), 1–42 (2020). https://doi.org/10.1007/s41918-019-00060-4
Cai, T., Valecha, P., Tran, V., Engle, B., Stefanopoulou, A., Siegel, J.: Detection of Li-ion battery failure and venting with Carbon Dioxide sensors. eTransportation 7, 100100 (2021). https://doi.org/10.1016/j.etran.2020.100100
Mansoor, M., et al.: An SOI CMOS-based multi-sensor MEMS chip for fluidic applications. Sensors (Switzerland) 16(11), 1608 (2016). https://doi.org/10.3390/s16111608
Mescheder U. et al.: Mems-based air quality sensor.
Zou, H.X., et al.: Mechanical modulations for enhancing energy harvesting: principles, methods and applications. Appl. Energy 255, 113871 (2019). https://doi.org/10.1016/j.apenergy.2019.113871
Li, L., Liu, H., Shao, M., Ma, C.: A novel frequency stabilization approach for mass detection in nonlinear mechanically coupled resonant sensors. Micromachines (Basel) 12(2), 178 (2021). https://doi.org/10.3390/mi12020178
Timoshenko S.: Strength of materials. 1940.
Rabenimanana, T., Walter, V., Kacem, N., Le Moal, P., Bourbon, G., Lardiès, J.: Mass sensor using mode localization in two weakly coupled MEMS cantilevers with different lengths: design and experimental model validation. Sens. Actuators A. Phys. 295, 643–652 (2019). https://doi.org/10.1016/j.sna.2019.06.004
Morozov, N.F., Indeitsev, D.A., Igumnova, V.S., Lukin, A.V., Popov, I.A., Shtukin, L.V.: Nonlinear dynamics of mode-localized MEMS accelerometer with two electrostatically coupled microbeam sensing elements. Int. J. Non Linear Mech. 138, 103852 (2022). https://doi.org/10.1016/j.ijnonlinmec.2021.103852
Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, Boston (2011)
“COMSOL,” 2022. https://www.comsol.com/ (Accessed Nov. 24, 2022).
Zhao, C., Montaseri, M.H., Wood, G.S., Pu, S.H., Seshia, A.A., Kraft, M.: A review on coupled MEMS resonators for sensing applications utilizing mode localization. Sens. Actuators A. Phys. 249, 93–111 (2016). https://doi.org/10.1016/j.sna.2016.07.015
Nayfeh, A.H., Ibrahim, R.A.: Nonlinear interactions: analytical, computational, and experimental methods. Appl. Mech. Rev. 54(4), B60–B61 (2001). https://doi.org/10.1115/1.1383674
Lyu, M., et al.: Exploiting nonlinearity to enhance the sensitivity of mode-localized mass sensor based on electrostatically coupled MEMS resonators. Int. J. Non-Linear Mech. 121, 103455 (2020). https://doi.org/10.1016/j.ijnonlinmec.2020.103455
Lyu, M., et al.: Computational investigation of high-order mode localization in electrostatically coupled microbeams with distributed electrodes for high sensitivity mass sensing. Mech. Syst. Signal Process. 158, 107781 (2021). https://doi.org/10.1016/j.ymssp.2021.107781
Hajjaj, A.Z., Ruzziconi, L., Alfosail, F., Theodossiades, S.: Combined internal resonances at crossover of slacked micromachined resonators. Nonlinear Dyn. 110(3), 2033–2048 (2022). https://doi.org/10.1007/s11071-022-07764-1