Triple oxygen and hydrogen isotopic study of hydrothermally altered rocks from the 2.43–2.41 Ga Vetreny belt, Russia: An insight into the early Paleoproterozoic seawater
Tài liệu tham khảo
Alexander, 1993, Oceanic faulting and fault-controlled subseafloor hydrothermal alteration in the sheeted dike complex of the Josephine ophiolite, J. Geophys. Res. Earth, 98, 9731, 10.1029/92JB01413
Alt, 2006, Oxygen isotope composition of a section of lower oceanic crust, ODP Hole 735B, Geochem. Geophys. Geosyst., 7, 1, 10.1029/2006GC001385
Alt, 1986, An oxygen isotopic profile through the upper kilometer of the oceanic crust, DSDP Hole 504B, Earth Planet. Sci. Lett., 80, 217, 10.1016/0012-821X(86)90106-8
Alt, 1995, Mineralogy and stable isotopic compositions of the hydrothermally altered lower sheeted dike complex, hole 504B, leg 140, Proc. Ocean Drill. Progr. Sci. Results, 137, 155
Alt, 1996, Hydrothermal alteration of a section of upper oceanic crust in the easter equatorial Pacific: a synthesis of results from Site 504 (DSDP Legs 69, 70, and 83, and ODP Legs 111, 137, 140, and 148), Proc. Ocean Drill. Program Sci. Results, 148, 417
Astafieva, 2009, Volcanic glasses as habitat for microfossils: evidence from the early Paleoproterozoic pillow lavas of Karelia and their modern analogues in the Mid-Atlantic Ridge, 1
Avice, 2018, Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterzoic rocks, Geochim. Cosmochim. Acta, 232, 82, 10.1016/j.gca.2018.04.018
Bao, 2016, Triple oxygen isotopes: fundamental relationships and applications, Annu. Rev. Earth Planet. Sci., 44, 463, 10.1146/annurev-earth-060115-012340
Bekker, 2004, Dating the rise of atmospheric oxygen, Nature, 427, 117, 10.1038/nature02260
Bindeman, 2017, The possibility of obtaining ultra-low-δ18O signature of precipitation near equatorial latitudes during the Snowball Earth glaciation episodes, Precambr. Res.
Bindeman, 2014, Field and microanalytical isotopic investigation of ultradepleted in 18O Paleoproterozoic “slushball earth” rocks from Karelia, Russia, Geosphere, 10, 308, 10.1130/GES00952.1
Bindeman, 2016, Oxygen isotope perspective on crustal evolution on early Earth: A record of Precambrian shales with emphasis on Paleoproterozoic glaciations and Great Oxygenation Event, Earth Planet. Sci. Lett., 437, 101, 10.1016/j.epsl.2015.12.029
Bindeman, 2018, Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago, Nature, 557, 545, 10.1038/s41586-018-0131-1
Bird, 2004, Epidote in geothermal systems, Rev. Mineral. Geochem., 56, 235, 10.2138/gsrmg.56.1.235
Bischoff, 1986, The system NaCl-H2O: relations of vapor-liquid near the critical temperature of water and of vapor-liquid-halite from 300° to 500°C, Geochim. Cosmochim. Acta, 50, 1437, 10.1016/0016-7037(86)90317-0
Bowen G. J. (2010) Waterisotopes.org. Gridded maps of the isotopic composition of meteoric precipitation.
Bushmin, 2008, Scheme of mineral facies of metamorphic rocks, Geol. Ore Dep., 50, 659, 10.1134/S1075701508080011
Cao, 2011, Equilibrium mass-dependent fractionation relationships for triple oxygen isotopes, Geochim. Cosmochim. Acta, 75, 7435, 10.1016/j.gca.2011.09.048
Chacko, 1999, A new technique for determining equilibrium hydrogen isotope fractionation factors using the ion microprobe: application to the epidote-water system, Geochim. Cosmochim. Acta, 63–1, 1, 10.1016/S0016-7037(99)00007-1
Cummins, 2014, Carbonate clumped isotope constraints on Silurian ocean temperature and seawater δ18O, Geochim. Cosmochim. Acta, 140, 241, 10.1016/j.gca.2014.05.024
Dodson, 1973, Closure temperature in cooling geochronological and petrological systems, Contrib. Mineral. Petrol., 40, 259, 10.1007/BF00373790
Depaolo, 2006, Isotopic effects in fracture-dominated reactive fluid – rock systems, Geochim. Cosmochim. Acta, 70, 1077, 10.1016/j.gca.2005.11.022
Eiler, 2011, Paleoclimate reconstruction using carbonate clumped isotope thermometry, Quat. Sci. Rev., 30, 3575, 10.1016/j.quascirev.2011.09.001
Fonneland-Jorgensen, 2005, Hydrothermal alteration and tectonic evolution of an intermediate- to fast-spreading back-arc oceanic crust: late Ordovician Solund-Stavfjord ophiolite, western Norway, Isl. Arc, 14, 517, 10.1111/j.1440-1738.2005.00481.x
Foustoukos, 2007, Fluid phase separation processes in submarine hydrothermal systems, Rev. Mineral. Geochemistry, 65, 213, 10.2138/rmg.2007.65.7
Furnes, 2007, A vestige of Earth’s oldest ophiolite, Science, 315, 1704, 10.1126/science.1139170
Graham, 1980, Experimental hydrogen isotope studies, II. Fractionations in the systems epidote-NaCl-H2O, epidote-CaCl2-H2O and epidote-seawater, and the hydrogen isotope composition of natural epidotes, Earth Planet. Sci. Lett., 49, 237, 10.1016/0012-821X(80)90068-0
Grassineau, 2001, Sulfur isotope analysis of sulfide and sulfate minerals by continuous flow-isotope ratio mass spectrometry, Anal. Chem., 73, 220, 10.1021/ac000550f
Gregory, 1981, An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges, J. Geophys. Res. Solid Earth, 86, 2737, 10.1029/JB086iB04p02737
Gumsley, 2017, Timing and tempo of the Great Oxidation Event, Proc. Natl. Acad. Sci., 114, 201608824, 10.1073/pnas.1608824114
Gutzmer, 2001, Formation of jasper and andradite during low-temperature hydrothermal seafloor metamorphism, Ongeluk Formation, South Africa, Contrib. Mineral. Petrol., 142, 27, 10.1007/s004100100270
Gutzmer, 2003, Ancient sub-seafloor alteration of basaltic andesites of the Ongeluk Formation, South Africa: implications for the chemistry of Paleoproterozoic seawater, Chem. Geol., 201, 37, 10.1016/S0009-2541(03)00225-0
Harper, 1988, A field, chemical, and stable isotope study of subseafloor metamorphism of the Josephine ophilote, California-Oregon, J. Geophys. Res., 93, 4625, 10.1029/JB093iB05p04625
Hayles, 2018, Theoretical calibration of the triple oxygen isotope thermometer, Geochim. Cosmochim. Acta, 235, 237, 10.1016/j.gca.2018.05.032
Heaton, 1977, Hydrogen and oxygen isotope evidence for sea-water-hydrothermal alteration and ore deposition, Troodos complex, Cyprus, Geol. Soc. London Spec. Publ., 7, 42, 10.1144/GSL.SP.1977.007.01.05
Herwartz, 2015, Revealing the climate of snowball Earth from Δ17O systematics of hydrothermal rocks, Proc. Natl. Acad. Sci., 112, 5337, 10.1073/pnas.1422887112
Horita, 1994, Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature, Geochim. Cosmochim. Acta, 58, 3425, 10.1016/0016-7037(94)90096-5
Hey, 1954, A new review of the chlorites, Mineral. Mag., 30, 277
Hodel, 2018, Fossil black smoker yields oxygen isotopic composition of Neoproterozoic seawater, Nat. Commun., 10.1038/s41467-018-03890-w
Hoefs, 2015, 389
Holland, 1984, 598
Holmden, 1993, The 18O/16O ratio of 2-billion-year-old seawater inferred from ancient oceanic crust, Science, 259, 1733, 10.1126/science.259.5102.1733
Hren, 2009, Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago, Nature, 462, 205, 10.1038/nature08518
Imbrie, 1984, The orbital theory of Pleistocene climate: support from a revised chronology, of the marine δ18O record, 269
Jaffrés, 2007, The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years, Earth-Sci. Rev., 83, 83, 10.1016/j.earscirev.2007.04.002
Kasting, 2006, Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater, Earth Planet. Sci. Lett., 252, 82, 10.1016/j.epsl.2006.09.029
Kawahata, 1987, Strontium, oxygen, and hydrogen isotope geochemistry of hydrothermally altered and weathered rocks in DSDP Hole 504B, Costa Rica Rift, Earth Planet. Sci. Lett., 85, 343, 10.1016/0012-821X(87)90132-4
Kempton, 1991, Geochemistry and isotopic composition of gabbros from layer 3 of the Indian Ocean crust, hole 735B, Proc. Ocean Drill. Program Sci. Results, 118, 127
Knauth, 1978, Oxygen isotope geochemistry of cherts from the Onverwacht Group (3.4 billion years), Transvaal, South Africa, with implications for secular variations in the isotopic composition of cherts, Earth Planet. Sci. Lett., 41, 209, 10.1016/0012-821X(78)90011-0
Knauth, 2003, High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa, Bull. Geol. Soc. Am., 115, 566, 10.1130/0016-7606(2003)115<0566:HACTIF>2.0.CO;2
Korenaga, 2017, Global water cycle and the coevolution of the Earth’s interior and surface environment, Philos. Trans. R. Soc. A: Math. Eng. Sci., 375, 20150393, 10.1098/rsta.2015.0393
Kulikov, 2008, The Ruiga intrusion: a typical example of a shallow-facies Paleoproterozoic peridotite-gabbro-komatiite-basaltic association of the Vetreny Belt, Southeastern Fennoscandia, Petrology, 16, 531, 10.1134/S0869591108060015
Kulikov, 2010, The Vetreny Poyas (Windy Belt) subprovince of southeastern Fennoscandia: an essential component of the ca. 2.5-2.4 Ga Sumian large igneous provinces, Precambr. Res., 183, 589, 10.1016/j.precamres.2010.07.011
Kurokawa, 2018, Subduction and atmospheric escape of Earth’s seawater constrained by hydrogen isotopes, Earth Planet. Sci. Lett., 10.1016/j.epsl.2018.06.016
Kyser, 1991, Retrograde exchange of hydrogen isotopes between hydrous minerals and water at low temperatures, Geochem. Soc. Spec. Publ., 3, 409
Laverne, 1995, Chemistry and geothermometry of secondary minerals from the deep sheeted dike complex, Hole 504B, Proc. Ocean Drill. Program Sci. Results, 137/140, 167
Leake, 1997, Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names, Can. Mineral., 82, 1019
Lécuyer, 1998, The hydrogen isotope composition of seawater and the global water cycle, Chem. Geol., 145, 249, 10.1016/S0009-2541(97)00146-0
Lécuyer, 1996, Hydrogen isotope composition of Early Proterozoic seawater, Geology, 24, 291, 10.1130/0091-7613(1996)024<0291:HICOEP>2.3.CO;2
Luz, 2010, Variations of 17O/16O and 18O/16O in meteoric waters, Geochim. Cosmochim. Acta, 74, 6276, 10.1016/j.gca.2010.08.016
Lyons, 2014, The rise of oxygen in Earth’s early ocean and atmosphere, Nature, 506, 307, 10.1038/nature13068
Marin-Carbonne, 2012, Micrometer-scale chemical and isotopic criteria (O and Si) on the origin and history of Precambrian cherts: implications for paleo-temperature reconstructions, Geochim. Cosmochim. Acta, 92, 129, 10.1016/j.gca.2012.05.040
Martin, 2017, Hydrogen isotope determination by TC/EA technique in application to volcanic glass as a window into secondary hydration, J. Volcanol. Geoth. Res., 348, 49, 10.1016/j.jvolgeores.2017.10.013
Matsuhisa, 1978, Mechanisms of hydrothermal crystallization of quartz at 250 °C and 15 kbar, Geochim. Cosmochim. Acta, 42, 173, 10.1016/0016-7037(78)90130-8
Matthews, 1994, Oxygen isotope geothermometers for metamorphic rocks, J. Metamorph. Geol., 12, 211, 10.1111/j.1525-1314.1994.tb00017.x
Matthews, 1983, Oxygen isotope fractionations involving pyroxenes: the calibration of mineral-pair geothermometers, Geochim. Cosmochim. Acta, 47, 631, 10.1016/0016-7037(83)90284-3
Melezhik, 2013, Reading the archive of earth’s oxygenation: Volume 3: Global Events and the Fennoscandian Arctic Russia – Drilling Early Earth Project, Front Earth Sci., 8, 10.1007/978-3-642-29682-6
Mezhelovskaya, 2016, Age range of formation of sedimentary volcanogenic complex of the Vetreny belt (the southeast of the baltic shield), Stratigr. Geol. Correl., 24, 105, 10.1134/S0869593816020040
Miller, 2002, Isotopic fractionation and the quantification of Δ17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance, Geochim. Cosmochim. Acta, 66, 1881, 10.1016/S0016-7037(02)00832-3
Muehlenbachs, 1998, The oxygen isotopic composition of the oceans, sediments and the seafloor, Chem. Geol., 145, 263, 10.1016/S0009-2541(97)00147-2
Muehlenbachs, 1976, Oxygen isotope composition of the oceanic crust and its bearing on seawater, J. Geophys. Res., 81, 4365, 10.1029/JB081i023p04365
Nehlig, 1991, Salinity of oceanic hydrothermal fluids: a fluid inclusion study, Earth Planet. Sci. Lett., 102, 310, 10.1016/0012-821X(91)90026-E
Ojakangas, 2001, Basin evolution of the Paleoproterozoic Karelian Supergroup of the Fennoscandian (Baltic) shield, Sed. Geol., 141–142, 255, 10.1016/S0037-0738(01)00079-3
Pack, 2014, The triple oxygen isotope composition of the Earth mantle and understanding Δ17O variations in terrestrial rocks and minerals, Earth Planet. Sci. Lett., 390, 138, 10.1016/j.epsl.2014.01.017
Pack, 2016, The oxygen isotope composition of San Carlos olivine on the VSMOW2-SLAP2 scale, Rapid Commun. Mass Spectrom., 30, 1495, 10.1002/rcm.7582
Perry, 1967, The oxygen isotope chemistry of ancient cherts, Earth Planet. Sci. Lett., 3, 62, 10.1016/0012-821X(67)90012-X
Pope, 2012, Isotope composition and volume of Earth’s early oceans, Proc. Natl. Acad. Sci., 109, 4371, 10.1073/pnas.1115705109
Pope, 2014, Stable isotopes of hydrothermal minerals as tracers for geothermal fluids in Iceland, Geothermics, 49, 99, 10.1016/j.geothermics.2013.05.005
Prokoph, 2008, Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history, Earth-Sci. Rev., 87, 113, 10.1016/j.earscirev.2007.12.003
Puchtel, 1996, Petrology of a 2.41 Ga remarkably fresh komatiitic basalt lava lake in Lion Hills, central Vetreny Belt, Baltic Shield, Contrib. Mineral. Petrol., 124, 273, 10.1007/s004100050191
Puchtel, 1997, Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Shield: evidence for an early Proterozoic mantle plume beneath rifted Archean continental lithosphere, Geochim. Cosmochim. Acta, 61, 1205, 10.1016/S0016-7037(96)00410-3
Puchtel, 2016, Lithophile and siderophile element systematics of Earth’s mantle at the Archean–Proterozoic boundary: evidence from 2.4 Ga komatiites, Geochim. Cosmochim. Acta, 180, 227, 10.1016/j.gca.2016.02.027
Robert, 2006, A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts, Nature, 443, 969, 10.1038/nature05239
Salminen, 2014, Paleomagnetic and geochronological studies on Paleoproterozoic diabase dykes of Karelia, East Finland-Key for testing the Superia supercraton, Precambr. Res., 244, 87, 10.1016/j.precamres.2013.07.011
Schiffman, 1988, Petrology and oxygen isotope geochemistry of a fossil seawater hydrothermal system within the Solea Graben, Northern Troodos Ophiolite, Cyprus, J. Geophys. Res., 93, 4612, 10.1029/JB093iB05p04612
Schrag, 1996, Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean, Science, 272, 1930, 10.1126/science.272.5270.1930
Seal, 2006, Sulfur isotope geochemistry of sulfide minerals, Rev. Mineral. Geochem., 61, 633, 10.2138/rmg.2006.61.12
Sengupta, 2018, Triple oxygen isotope mass balance for the Earth’s oceans with application to Archean cherts, Chem. Geol., 495, 18, 10.1016/j.chemgeo.2018.07.012
Shackleton, 1975, Paleotemperature history of the cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279 and 281, 29
Shanks, 2001, Stable isotopes in seafloor hydrothermal systems, Rev. Mineral. Geochem., 43, 469, 10.2138/gsrmg.43.1.469
Sharkov, 2004, Structural and compositional characteristics of the oldest volcanic glass in the early paleoproterozoic boninite-like lavas of Southern Karelia, Petrology, 12, 264
Sharp, 1994, Quartz-calcite oxygen isotope thermometry: a calibration based on natural isotopic variations, Geochim. Cosmochim. Acta, 58, 4491, 10.1016/0016-7037(94)90350-6
Sharp, 2016, A calibration of the triple oxygen isotope fractionation in the SiO2-H2O system and applications to natural samples, Geochim. Cosmochim. Acta, 186, 105, 10.1016/j.gca.2016.04.047
Shields, 2002, The Precambrian marine carbonate isotope database: version 1.1, Geochem. Geophys. Geosyst., 3, 1, 10.1029/2001GC000266
Shmulovich, 1999, Stable isotope fractionation between liquid and vapour in water–salt systems up to 600 °C, Chem. Geol., 157, 343, 10.1016/S0009-2541(98)00202-2
Stakes, 1982, Mineralogy and stable isotope geochemistry of hydrothermally altered oceanic rocks, Earth Planet. Sci. Lett., 57, 285, 10.1016/0012-821X(82)90151-0
Strand, 1993, Palaeoproterozoic glaciomarine sedimentation in an extensional tectonic setting: the Honkala Formation, Finland, Precambr. Res., 64, 253, 10.1016/0301-9268(93)90080-L
Taylor, 1977, Water/rock interactions and the origin of H2O in granitic batholiths: Thirtieth William Smith lecture, J. Geol. Soc., 133, 509, 10.1144/gsjgs.133.6.0509
Taylor, 1985
Turchyn, 2013, Reconstructing the oxygen isotope composition of late Cambrian and Cretaceous hydrothermal vent fluid, Geochim. Cosmochim. Acta, 123, 440, 10.1016/j.gca.2013.08.015
Vanko, 1996, Chemistry and origin of secondary minerals from the deep sheeted dikes cored during Leg 148 (Hole 504B), Proc. Ocean Drill. Program Sci. Results, 148, 71
Veizer, 1999, 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater, Chem. Geol., 161, 59, 10.1016/S0009-2541(99)00081-9
Veizer, 2015, Temperatures and oxygen isotopic composition of Phanerozoic oceans, Earth-Sci. Rev., 146, 92, 10.1016/j.earscirev.2015.03.008
Wallmann, 2001, The geological water cycle and the evolution of marine δ18O values, Geochim. Cosmochim. Acta, 65, 2469, 10.1016/S0016-7037(01)00603-2
Wallmann, 2004, Impact of atmospheric CO2 and galactic cosmic radiation on Phanerozoic climate change and the marine δ18O record, Geochem. Geophys. Geosyst., 5, 10.1029/2003GC000683
Wark, 2006, TitaniQ: a titanium-in-quartz geothermometer, Contrib. Miner. Petrol., 152, 743, 10.1007/s00410-006-0132-1
Wenner, 1974, D/H and O18/O16 studies of serpentinization of ultramaflc rocks, Geochim. Cosmochim. Acta, 38, 1255, 10.1016/0016-7037(74)90120-3
Wostbrock, 2018, Calibration and application of silica-water triple oxygen isotope thermometry to geothermal systems in Iceland and Chile, Geochim. Cosmochim. Acta, 234, 84, 10.1016/j.gca.2018.05.007
Zahnle, 2013, The rise of oxygen and the hydrogen hourglass, Chem. Geol., 362, 26, 10.1016/j.chemgeo.2013.08.004
Zakharov, 2017, Dating the Paleoproterozoic snowball Earth glaciations using contemporaneous subglacial hydrothermal systems, Geology, 45, 5, 10.1130/G38759.1
Zheng, 1993, Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates, Earth Planet. Sci. Lett., 120, 247, 10.1016/0012-821X(93)90243-3