Triple diffusion with heat transfer under different effects on magnetized hyperbolic tangent nanofluid flow

Uzma Arif1, M. Asif Memon2, Rai Sajjad Saif3, A.S. El-Shafay4,5, M. Nawaz1, Taseer Muhammad6
1Department of Applied Mathematics & Statistics, Institute of Space Technology, Islamabad, 44000, Pakistan
2Department of Mathematics and Social Sciences, Sukkur IBA University, Sukkur 65200, Sindh Pakistan
3Department of Humanities and Sciences, School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
4Department of Mechanical Engineering, College of Engineering, Prince Sattam bin Abdulaziz University, Alkharj 16273, Saudi Arabia
5Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
6Department of Mathematics, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia

Tóm tắt

The core objective of the presented analysis is to explore the mixed convection and magnetohydrodynamics effects on tangent hyperbolic nanofluid flow generated by elongating surface. Mechanisms of thermal radiation and chemical reaction are incorporated in energy and concentration equations respectively. Moreover, the Soret-Dufour phenomenon is also taken into consideration. Mathematical formulation is floated under the assumption of boundary layer theory. Formulated partial differential (PD) system reduces into nonlinear ordinary differential (OD) system with the help of suitable transformations which has been solved with a technique named finite element method (FEM) and outcomes are justified through grid-free and convergence phenomenon. The characteristics of numerous effective parameters are displayed graphically and discussed. Furthermore, the physical quantities like local Nusselt number, Sherwood number and skin friction coefficient are tabulated numerically and analyzed. Solute concentration profile [Formula: see text] shown reverse trend for distinct values of [Formula: see text] and [Formula: see text] [Formula: see text] diminishes whereas [Formula: see text] boosted the [Formula: see text].

Từ khóa


Tài liệu tham khảo

10.1016/j.aej.2015.07.003

10.1016/j.rinp.2017.07.012

10.1016/j.rinp.2017.07.014

10.1016/j.csite.2017.07.003

10.1016/j.rinp.2017.07.061

10.1016/j.heliyon.2017.e00443

10.1016/j.rinp.2017.08.021

10.1016/j.rinp.2017.09.041

10.1016/j.heliyon.2019.e03117

10.1017/jmech.2012.142

10.1016/j.ijmecsci.2018.02.049

10.1016/j.ijheatmasstransfer.2019.05.026

10.1016/j.ijthermalsci.2018.10.015

10.1016/j.ijheatmasstransfer.2019.03.132

10.1016/j.csite.2018.100384

10.1016/j.cmpb.2019.105145

10.1016/j.ijheatmasstransfer.2020.119696

10.1016/j.rinp.2016.12.039

10.1177/0954408916646139

10.1016/j.rinp.2016.12.038

10.1063/1.5050670

10.1088/1402-4896/ab23af

10.1108/HFF-08-2017-0301

10.1063/1.5084311

10.1007/s10973-019-08304-7

10.1063/5.0003042

10.3390/coatings10020154

10.1016/j.physa.2019.124060

10.1007/s12043-019-1834-z

10.1108/HFF-01-2019-0012

Peiravi MM, Alinejad J, Ganji DD, et al. Numerical study of fins arrangement and nanofluids effects on three-dimensional natural convection in the cubical enclosure. Transp Phenom Nano Micro Scales 2019; 7: 97–112.

10.1177/0954408919878984

10.1007/s11012-020-01240-z

10.1063/5.0019259

10.1016/j.aej.2021.04.013

Rao SS, 2005, The finite element method in engineering, 4

10.1016/j.rinp.2017.10.035

10.1063/1.5032171

10.1016/j.molliq.2018.07.031

10.1039/C8RA03825B

10.1088/0253-6102/70/1/49

10.1016/j.engfracmech.2020.106989

10.1016/j.supflu.2020.104797

10.1016/j.jcp.2020.109274

10.1007/s10973-020-10026-0

10.1016/j.rinp.2017.07.061