Triple Probe Measurements in Transient Plasma of Pulsed Capacitive Discharge

Springer Science and Business Media LLC - Tập 34 - Trang 405-410 - 2014
A. Qayyum1, S. Ahmad1, N. Ahmad1, Farah Deeba1, S. Hussain1
1National Tokamak Fusion Program, Islamabad, Pakistan

Tóm tắt

Triple Langmuir probe (TLP) technique is used to measure local and time-resolved plasma parameters in pulsed capacitive discharge. This technique allows the instantaneous measurement of plasma parameters in transient discharges and obviates the need of any voltage or frequency sweep. In TLP configuration, two probes are differentially biased to acquire ion-saturation current whereas third probe is kept floating into plasma to measure floating potential. Thus TLP technique enables to measure electron temperature T e , electron number density n e , floating potential V f , and their fluctuations as a function of time in rapidly time-varying plasmas. The results presented here demonstrate the progression of capacitive discharge for different fill pressures. This technique would be useful in measuring the temporal behavior of rapidly-time varying plasmas, such as the turbulence in the edge region of magnetically confined fusion plasma of GLAST Spherical Tokamak.

Tài liệu tham khảo

M. Abrar, A. Qayyum, A.R. Gilani, A.W. Khan, A. Saeed, S. Naseer, M. Zakaullah, Curr. Appl. Phys. 13, 969 (2013) M. Abrar, A.W. Khan, A. Saeed, S. Naseer, A. Qayyum, M. Zakaulah, Eur. Phys. J. Appl. Phys. 62, 30801 (2013) T. Kubo, H. Kawata, K. Murata, Rev. Sci. Instrum. 69, 2681 (1998) L. Schott, in Electrical probes in plasma diagnostics, ed. by W. Lochte-Holtgreven (AIP, Woodbury, 1995), p. 668–731 M.Y. Naz, A. Ghaffar, N.U. Rehman, S. Naseer, M. Zakaullah, Prog. Electromagn. Res. 114, 113 (2011) B.E. Cherrington, Plasma Chem. Plasma Process. 2, 113 (1982) E.O. Johnson, L. Malter, Phys. Rev. 80, 58 (1950) M.H. Lee, S.H. Jang, C.W. Chung, J. Appl. Phys. 101, 033305 (2007) M.Y. Naz, A. Ghaffar, N.U. Rehman, M. Azam, S. Shukrullah, A. Qayyum, M. Zakaullah, Prog. Electromagn. Res. 115, 207 (2011) R.L. Merlino, Am. J. Phys. 75, 1078 (2007) C. Brandt, H. Testrich, R. Kozakov, C. Wilke, Rev. Sci. Instrum. 77, 023504 (2006) T.K. Popov, P. Ivanova, M. Dimitrova, J. Kovacic, T. Gyergyek, M. Cercek, Plasma Sources Sci. Technol. 21, 025004 (2012) P.C. Liewer, J.M. Mc Chesney, S.J. Zweben, R.W. Gould, Phys. Fluids 29, 309 (1986) N. Hershkowitz, Phys. Plasmas 12, 055502 (2005) S.L. Chen, T. Sekiguchi, J. Appl. Phys. 36, 2363 (1965) L. Meng, A.N. Cloud, S. Jung, D.N. Ruzic, J. Vac. Sci. Technol. A 29, 011024 (2011) P.M. Bryant, S.A. Voronin, J.W. Bradley, A. Vetushka, J. Appl. Phys. 102, 043302 (2007) H. Ji, H. Toyama, K. Yamagishi, S. Shinohara, A. Fujisawa, K. Miyamoto, Rev. Sci. Instrum. 62, 2326 (1991) Y. Qin, Rev. Sci. Instrum. 76, 116102 (2005) C. Riccardi, G. Longoni, G. Chiodini, M. Fontanesi, Rev. Sci. Instrum. 72, 461 (2001) G. Chiodini, C. Riccardi, M. Fontanesi, Rev. Sci. Instrum. 70, 2681 (1999) T. Enling, X. Shenghai, Y. Minghai, L. Lexin, Plasma Sci. Technol 14, 747 (2012) A. Qayyum, N. Ahmad, S. Ahmad, F. Deeba, R. Ali, S. Hussain, Rev. Sci. Instrum. 84, 123502 (2013) C. Theiler, I. Furno, A. Kuenlin, Ph Marmillod, A. Fasoli, Rev. Sci. Instrum. 82, 013504 (2011)