Trigonal gorenstein curves and special linear systems

Springer Science and Business Media LLC - Tập 119 - Trang 143-155 - 2000
E. Ballico1
1Department of Mathematics, University of Trento, Povo, Italy

Tóm tắt

LetY be a Gorenstein trigonal curve withg:=pa(Y)≥0. Here we study the theory of special linear systems onY, extending the classical case of a smoothY given by Maroni in 1946. As in the classical case, to study it we use the minimal degree surface scroll containing the canonical model ofY. The answer is different if the degree 3 pencil onY is associated to a line bundle or not. We also give the easier case of special linear series on hyperelliptic curves. The unique hyperelliptic curve of genusg which is not Gorenstein has no special spanned line bundle.

Tài liệu tham khảo

[AK] A. Altman and S. Kleiman,Introduction to Grothendieck duality theory, Lecture Notes in Mathematics146, Springer-Verlag, Berlin, 1970. [AM] A. Andreotti and A. Mayer,On period relations for abelian integrals on algebraic curves, Annali della Scuola Normale Superiore di Pisa21 (1967), 189–238. [BGS] J. Briançon, M. Granger and J.-P. Speder,Sur le schema de Hilbert d'une courbe plane, Annales Scientifiques de l'École Normale Supérieure. 4e Série14 (1981), 1–25. [C] M. Coppens,Free linear systems on integral Gorenstein curves, Journal of Algebra145 (1992), 209–218. [Co] P. Cook,Local and global aspects of the module theory of singular curves, Ph.D. Thesis, Liverpool University, 1993. [D'S] C. D'Souza,Compactification of generalized jacobians, Proceedings of the Indian Academy of Sciences88 (1979), 419–457. [EKS] D. Eisenbud, J. Koh and M. Stillman,Determinantal equations for curves of high degree, American Journal of Mathematics110 (1988), 513–539. [H] R. Hartshorne,Generalized divisors on Gorenstein curves and a theorem of Noether, Journal of Mathematics of Kyoto University26 (1986), 375–386. [Ma] A. Maroni,Le serie lineari speciali sulle curve trigonali, Annali di Matematica Pura ed Applicata (4)25 (1946), 341–354. [MS] G. Martens and F.-O. Schreyer,Line bundles and syzygies of trigonal curves, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg56 (1986), 169–189. [RS] R. Rosa and K. O. Stöhr,Trigonal Gorenstein curves, preprint. [Ro] M. Rosenlicht,Equivalence relations on algebraic curves, Annals of Mathematics56 (1952), 169–191. [Sc] F.-O. Schreyer,A standard basis approach to syzygies of canonical curves, Journal für die Reine und Angewandte Mathematik421 (1991), 83–123. [Se] C. S. Seshadri,Fibrés vectoriels sur les courbes algébriques, Astérisque96 (1982), 1–209.