Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping

Energy and Environmental Science - Tập 8 Số 5 - Trang 1594-1601
Jiao Deng1,2,3,4,5, Haobo Li1,2,3,4,5, Jianping Xiao1,2,3,4,5, Yunchuan Tu1,2,3,4,5, Dehui Deng1,2,3,4,5, Huaixin Yang6,7,8,1,9, Huanfang Tian6,7,8,1,9, Jianqi Li6,7,8,1,9, Pengju Ren1,2,3,4,5, Xinhe Bao1,2,3,4,5
1Chinese Academy of sciences
2Dalian
3Dalian Institute of Chemical Physics
4State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
5iChEM
6Beijing 100190
7Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
8China
9Institute of Physics

Tóm tắt

Doping single-atom metals into MoS2 matrix can efficiently trigger the electrocatalytic hydrogen evolution activity of inert S atoms on 2D MoS2 surface and meanwhile enhance catalytic stability and anti-poison ability.

Từ khóa


Tài liệu tham khảo

Xu, 2013, Chem. Rev., 113, 3766, 10.1021/cr300263a

Wang, 2012, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193

Liu, 2013, Nat. Commun., 4, 1776, 10.1038/ncomms2803

Novoselov, 2005, Proc. Natl. Acad. Sci. U. S. A., 102, 10451, 10.1073/pnas.0502848102

Lee, 2014, Nat. Nanotechnol., 9, 676, 10.1038/nnano.2014.150

Merki, 2011, Energy Environ. Sci., 4, 3878, 10.1039/c1ee01970h

Moses, 2007, J. Catal., 248, 188, 10.1016/j.jcat.2007.02.028

Moses, 2014, Catal. Lett., 144, 1425, 10.1007/s10562-014-1279-4

Wambeke, 1988, J. Catal., 109, 320, 10.1016/0021-9517(88)90215-1

Huang, 2009, J. Phys. Chem. C, 113, 5238, 10.1021/jp807705y

Zaman, 2012, Catal. Rev., 54, 41, 10.1080/01614940.2012.627224

Santos, 2013, ACS Catal., 3, 1634, 10.1021/cs4003518

Laursen, 2012, Energy Environ. Sci., 5, 5577, 10.1039/c2ee02618j

Hinnemann, 2005, J. Am. Chem. Soc., 127, 5308, 10.1021/ja0504690

Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483

Li, 2011, J. Am. Chem. Soc., 133, 7296, 10.1021/ja201269b

Huang, 2013, Nat. Commun., 4, 1444, 10.1038/ncomms2472

Deng, 2014, RSC Adv., 4, 34733, 10.1039/C4RA05614K

Bollinger, 2001, Phys. Rev. Lett., 87, 196803, 10.1103/PhysRevLett.87.196803

Wang, 2014, Chem. Soc. Rev., 43, 7067, 10.1039/C4CS00141A

Deng, 2011, Chem. Mater., 23, 1188, 10.1021/cm102666r

Zhang, 2013, Nat. Commun., 4, 1443, 10.1038/ncomms2464

Dresselhaus, 2001, Nature, 414, 332, 10.1038/35104599

McCrory, 2015, J. Am. Chem. Soc., 137, 4347, 10.1021/ja510442p

Kresse, 1996, Phys. Rev. B: Condens. Matter Mater. Phys., 54, 11169, 10.1103/PhysRevB.54.11169

Blochl, 1994, Phys. Rev. B: Condens. Matter Mater. Phys., 50, 17953, 10.1103/PhysRevB.50.17953

Perdew, 1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Monkhorst, 1976, Phys. Rev. B: Solid State, 13, 5188, 10.1103/PhysRevB.13.5188

Henkelman, 2000, J. Chem. Phys., 113, 9978, 10.1063/1.1323224

Grimme, 2006, J. Comput. Chem., 27, 1787, 10.1002/jcc.20495

Chang, 1998, J. Catal., 176, 42, 10.1006/jcat.1998.2001

Pazmino, 2013, Catal. Lett., 143, 1098, 10.1007/s10562-013-1135-y

Conway, 2002, Electrochim. Acta, 47, 3571, 10.1016/S0013-4686(02)00329-8

Merki, 2012, Chem. Sci., 3, 2515, 10.1039/c2sc20539d

Bockris, 1952, J. Electrochem. Soc., 99, 169, 10.1149/1.2779692

Tsai, 2014, Nano Lett., 14, 1381, 10.1021/nl404444k

Nørskov, 2005, J. Electrochem. Soc., 152, J23, 10.1149/1.1856988

Greeley, 2006, Nat. Mater., 5, 909, 10.1038/nmat1752

Sheng, 2013, Energy Environ. Sci., 6, 1509, 10.1039/c3ee00045a