Triethylamine: a potential N-base surrogate for pyridine in Knoevenagel condensation of aromatic aldehydes and malonic acid

New Journal of Chemistry - Tập 40 Số 6 - Trang 4962-4968
Hitesh S. Pawar1,2,3,4, Adhirath S. Wagh1,2,3,4, Arvind Lali1,5,6,2,4
1DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, N.P. Marg Matunga (w), Matunga, Mumbai, India
2India
3Institute of Chemical Technology
4Mumbai
5Department of Chemical Engineering
6Department of Chemical Engineering, Institute of Chemical Technology, N.P. Marg Matunga (w), Matunga, Mumbai, India

Tóm tắt

Triethyl amine was successfully examined as a potent N-base surrogate for Knoevenagel condensation to produce cinnamic acids without compromising product yield.

Từ khóa


Tài liệu tham khảo

L. F. Tietze and U.Beifuss, in The Knoevenagel Reaction In Comprehensive Organic Synthesis, ed. B. M. Trost, Pergamon Press, Oxford, UK, 1991

Cho, 1991, J. Med. Chem., 34, 1503, 10.1021/jm00108a039

Nokami, 2001, J. Org. Chem., 66, 1228, 10.1021/jo001323g

Kwak, 2004, Macromolecules, 37, 2021, 10.1021/ma035679g

Chavan, 2013, ACS Sustainable Chem. Eng., 1, 929, 10.1021/sc4000237

De, 2011, J. Med. Chem., 54, 1449, 10.1021/jm101510d

Sharma, 2011, J. Chem. Pharm. Res., 3, 403

Jackson, 2004, Green Chem., 6, 193, 10.1039/b315764b

Hangarge, 2002, Green Chem., 4, 266, 10.1039/b111634g

Knoevenagel, 1894, Chem. Ber., 27, 2345, 10.1002/cber.189402702229

Tanaka, 1988, Bull. Chem. Soc. Jpn., 61, 2473, 10.1246/bcsj.61.2473

Aldabalde, 2011, Open J. Phys. Chem., 01, 85, 10.4236/ojpc.2011.13012

Mcnulty, 1998, Tetrahedron Lett., 39, 8013, 10.1016/S0040-4039(98)01789-4

Gutmann, 2010, Chem. – Eur. J., 16, 12182, 10.1002/chem.201001703

Obermayer, 2013, Chem. – Eur. J., 19, 15827, 10.1002/chem.201303638

U.S. EPA, Health and Environmental Effects Profile for Pyridine, U.S. Environmental Protection Agency 1986, Washington, D.C., EPA/600/X-86/168 (NTIS PB89123384)

G. Aylward , SI Chemical Data, John Wiley and Sons, 6th edn, 2008, ISBN 978-0-470-81638-7

Alfonsi, 2008, Green Chem., 10, 31, 10.1039/B711717E

SawpathKumar, 1998, Synth. Commun., 28, 3811, 10.1080/00397919808004934

Kumar, 2010, Synth. Commun., 40, 1915, 10.1080/00397910903162833

Valizadeh, 2005, Synth. Commun., 35, 785, 10.1081/SCC-200050942

Gupta, 2007, ARKIVOC, 94, 10.3998/ark.5550190.0008.110

Dalko, 2004, Angew. Chem., Int. Ed., 43, 5138, 10.1002/anie.200400650

Krishnan, 2008, Eur. J. Org. Chem., 4763, 10.1002/ejoc.200800516

Zhu, 2012, Chin. J. Chem., 30, 139, 10.1002/cjoc.201180455

Mitra, 1999, Synth. Commun., 29, 573, 10.1080/00397919908085805

Simpson, 2005, Tetrahedron Lett., 46, 6893, 10.1016/j.tetlet.2005.08.011

M. Kidwai and N. K.Mishra, Green Chemistry – Environmentally Benign Approaches, InTech, 2012, ISBN 978-953-51-0334-9

Ogiwara, 2015, J. Org. Chem., 80, 3101, 10.1021/acs.joc.5b00011

Y. Ikushima and M.Arai, Stoichiometric Organic Reactions, Chemical Synthesis Using Supercritical Fluids, Wiley-VCH Verlag GmbH, Weinheim, Germany, 1999

K. V. Narayanan and B.Lakshmikutty, Sticheomitry and Process Calculations, PHI Learning Pvt. Ltd, 2006

C. H. Bartholomew and R. J.Farrauto, Fundamentals of Industrial Catalytic Processes, John Wiley & Sons, 2011

Sheldon, 2005, Green Chem., 7, 267, 10.1039/b418069k

P. Anastas and J. C.Warner, Green Chemistry: Theory and practice, Oxford University Press, Oxford, 1998

Villa, 2003, Green Chem., 5, 623, 10.1039/b306948f

Martins, 2009, Chem. Rev., 109, 3885, 10.1021/cr9001098

Qian, 2010, Bioorg. Med. Chem., 18, 4991, 10.1016/j.bmc.2010.06.003