Tribological properties of C/C-SiC composites for brake discs
Tóm tắt
This study examines the friction and wear of ceramic matrix composites designed for use in automotive brake discs. The composites are produced by reinforcing a SiC matrix with carbon fibers using a liquid silicon infiltration method. C/C-SiC composites with two different compositions are fabricated to examine the compositional effect on the tribological properties. The tribological properties are evaluated using a scale dynamometer with a low-steel type friction material. The results show that the coefficient of friction is determined by the composition of the composite, which affects the propensity of friction film formation on the disc surface. A stable friction film on the disc surface also improves the wear resistance by diminishing the abrasive action of the disc. On the other hand, the friction film formation on the disc is affected by the applied pressure, and stable films are obtained at high pressures. This trend is prominent with discs with high Si content. However, both C/C/-SiC composites show superior performance in terms of the friction force oscillation, which is closely related to brake-induced vibration.
Tài liệu tham khảo
M. Terhech, R. R. Manory, and J. H. Hensler, Wear 180, 73 (1995).
J. D. Rainbolt, SAE Technical Papers 750733 (1975).
G. Ohira, T. Kusagawa, and E. Niyama, Physical Metallurgy of Cast Iron IV, MRS Proceedings (1990).
H. Metzler, SAE Technical Papers 990847 (1990).
H. Nakanishi, K. Kakihara, A. Nakayama, and T. Murayama, JSAE Review 23, 365 (2003).
N. Oda, Y. Sugimoto, T. Higuchi, and K. Minesira, SAE Technical Papers 970787 (1997).
P. Wycliffe, SAE Technical Papers 93018 (1993).
T. Hutton, B. McEnaney, and J. C. Crelling, Carbon 37, 907 (1999).
G. Savage, Carbon/Carbon Composites, Chapman & Hall, London (1992).
W. Krenkel, B. Heidenreigh, and R. Renz, Adv. Eng. Mater. 4, 427 (2002).
M. Berbon and M. Calabrese, J. American Ceramic Soceity 85, 1891 (2002).
Y. Xu, Y. Zhang, L. Cheng, L. Zhang, J. Lou, and J. Zhang, Ceram. Int. 33, 439 (2007).
W. Krenkel and F. Berndt, Mat. Sci. Eng. A 412, 177 (2005).
X. He, X. Zhang, C. Zhang, X. Zhou, and A. Zhou, Comp. Sci. and Tech. 61, 117 (2001).
S. J. Kim, M. H. Cho, D.-S. Lim, and H. Jang, Wear 251, 1484 (2001).
G. Nicholson, Facts about Friction, Gedoran America, Winchester (1995).
S. B. Park, K. H. Cho, S. Jung, and H. Jang, Met. Mater. Int. 15, 27 (2009).
M. H. Cho, J. J. Lee, S. J. Kim, and H. Jang, Wear 260, 855 (2006).
K. H. Cho, M. H. Cho, S. J. Kim, and H. Jang, Tribol. Lett. 32, 59 (2008).
M. H. Cho, K. H. Cho, S. J. Kim, D. H. Kim, and H. Jang, Tribol. Lett. 20, 101 (2005).
R. Rabinowicz, Friction and Wear of Materials, 2 nd ed., Wiley (1995).
S. K. Rhee and P. A. Thesier, SAE Technical Papers 720449 (1972).
H. Jang, J. S. Lee, and J. W. Fash, Wear 251, 1477 (2001).
S. J. Kim, M. H. Cho, R. H. Basch, J. W. Fash, and H. Jang, Tribol. Lett. 17, 655 (2004).
H. Jang and S. J. Kim, Brake Friction Materials (eds., S. K. Sinha and B. J. Briscoe), p. 506–532, Polymer Tribology, Imperial College, London (2009).