Tribological behavior of few-nanometer-thick MoS2 prepared by low-temperature conversion of atomic layer deposited MoOx films

Surface and Coatings Technology - Tập 471 - Trang 129884 - 2023
Tomas F. Babuska1, Michael T. Dugger1, Karl A. Walczak2, Ping Lu1, Adam Schwartzberg3, Shaul Aloni3, Tevye R. Kuykendall3, John F. Curry1
1Material, Physical and Chemical Sciences, Sandia National Laboratories, United States of America
2Advanced Mechanical Design, Sandia National Laboratories, United States of America
3The Molecular Foundry, Lawrence Berkeley National Laboratory, United States of America

Tài liệu tham khảo

Bala, 2022, Low-temperature plasma-assisted growth of large-area MoS 2 for transparent phototransistors, Adv. Funct. Mater., 32, 2205106, 10.1002/adfm.202205106 Ahn, 2015, Low-temperature synthesis of large-scale molybdenum disulfide thin films directly on a plastic substrate using plasma-enhanced chemical vapor deposition, Adv. Mater., 27, 5223, 10.1002/adma.201501678 Liu, 2020, Growth of multiorientated polycrystalline MoS2 using plasma-enhanced chemical vapor deposition for efficient hydrogen evolution reactions, Nanomaterials (Basel), 10 Hilton, 1992, Applications of solid lubricant films in spacecraft, Surf. Coat. Technol., 54–55, 435, 10.1016/S0257-8972(07)80062-4 Donnet, 1996, Super-low friction of MoS2 coatings in various environments, Tribol. Int., 29, 123, 10.1016/0301-679X(95)00094-K Le Mogne, 1994, Nature of super-lubricating MoS2 physical vapor deposition coatings, J. Vac. Sci. Technol. A, 12, 1998, 10.1116/1.578996 Liu, 2015, CVD growth of MoS2-based two-dimensional materials, Chem. Vap. Depos., 21, 241, 10.1002/cvde.201500060 Kotsakidis, 2019, Oxidation of monolayer WS2 in ambient is a Photoinduced process, Nano Lett., 19, 5205, 10.1021/acs.nanolett.9b01599 Valdivia, 2016, Atomic layer deposition of two dimensional MoS2 on 150 mm substrates, J. Vac. Sci. Technol. A, 34, 10.1116/1.4941245 Jang, 2016, Wafer-scale, conformal and direct growth of MoS2 thin films by atomic layer deposition, Appl. Surf. Sci., 365, 160, 10.1016/j.apsusc.2016.01.038 Pyeon, 2016, Wafer-scale growth of MoS2 thin films by atomic layer deposition, Nanoscale, 8, 10792, 10.1039/C6NR01346E Curry, 2016, Highly oriented MoS2 coatings: tribology and environmental stability, Tribol. Lett., 64, 11, 10.1007/s11249-016-0745-0 Curry, 2017, Impact of microstructure on MoS2 oxidation and friction, ACS Appl. Mater. Interfaces, 9, 28019, 10.1021/acsami.7b06917 Zabinski, 2006, Multi-environmental lubrication performance and lubrication mechanism of MoS2/Sb2O3/C composite films, Tribol. Lett., 23, 155, 10.1007/s11249-006-9057-0 Spalvins, 1982, Morphological and frictional behavior of sputtered MoS2 films, Thin Solid Films, 96, 17, 10.1016/0040-6090(82)90208-5 Spalvins, 1980, Tribological properties of sputtered MoS2 films in relation to film morphology, Thin Solid Films, 73, 291, 10.1016/0040-6090(80)90492-7 Hilton, 1990, Tribological performance and deformation of sputter-deposited MoS2 solid lubricant films during sliding wear and indentation contact, Thin Solid Films, 188, 219, 10.1016/0040-6090(90)90285-L Buck, 1987, Preparation and properties of different types of sputtered MoS2 films, Wear., 114, 264, 10.1016/0043-1648(87)90116-5 Demirtaş, 2020, Layer and size distribution control of CVD-grown 2D MoS2 using ALD-deposited MoO3 structures as the precursor, Mater. Sci. Semicond. Process., 108, 10.1016/j.mssp.2019.104880 Martella, 2016, Engineering the growth of MoS2via atomic layer deposition of molybdenum oxide film precursor, Adv. Electron. Mater., 2, 1600330, 10.1002/aelm.201600330 Keller, 2017, Process control of atomic layer deposition molybdenum oxide nucleation and sulfidation to large-area MoS2 monolayers, Chem. Mater., 29, 2024, 10.1021/acs.chemmater.6b03951 Sharma, 2020, Large area, patterned growth of 2D MoS2 and lateral MoS2–WS2 heterostructures for nano- and opto-electronic applications, Nanotechnology, 31, 10.1088/1361-6528/ab7593 Yang, 2019, Trickle flow aided atomic layer deposition (ALD) strategy for ultrathin molybdenum disulfide (MoS2) synthesis, ACS Appl. Mater. Interfaces, 11, 36270, 10.1021/acsami.9b12023 Kim, 2016, Self-limiting layer synthesis of transition metal dichalcogenides, Sci. Rep., 6, 18754, 10.1038/srep18754 Ho, 2017, Edge-on MoS2 thin films by atomic layer deposition for understanding the interplay between the active area and hydrogen evolution reaction, Chem. Mater., 29, 7604, 10.1021/acs.chemmater.7b03212 Joe, 2018, Mixed-phase (2H and 1T) MoS2 catalyst for a highly efficient and stable Si photocathode, Catalysts, 8, 580, 10.3390/catal8120580 Oh, 2017, Atomic layer deposited molybdenum disulfide on Si photocathodes for highly efficient photoelectrochemical water reduction reaction, J. Mater. Chem. A Mater. Energy Sustain., 5, 3304, 10.1039/C6TA10707A McCrory, 2015, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices, J. Am. Chem. Soc., 137, 4347, 10.1021/ja510442p Desai, 2016, MoS2 transistors with 1-nanometer gate lengths, Science, 354, 99, 10.1126/science.aah4698 Long, 2016, High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2Detection, Adv. Funct. Mater., 26, 5158, 10.1002/adfm.201601562 Hochanadel, 1994, Heat treatment of investment cast PH 13-8 Mo stainless steel: part I. mechanical properties and microstructure, Metall. Mater. Trans. A., 25, 789, 10.1007/BF02665455 Huang, 2016, A high temperature mechanical study on PH 13-8 Mo maraging steel, Mater. Sci. Eng. A, 651, 574, 10.1016/j.msea.2015.10.077 Seetharaman, 1981, Precipitation hardening in a PH 13-8 Mo stainless steel, Mater. Sci. Eng., 47, 1, 10.1016/0025-5416(81)90034-3 Yang, 2020, Nanotribological properties of 2-D MoS2 on different substrates made by atomic layer deposition (ALD), Appl. Surf. Sci., 502, 10.1016/j.apsusc.2019.144402 Yang, 2020, Plasma-assisted friction control of 2D MoS2 made by atomic layer deposition, Nanotechnology., 31, 10.1088/1361-6528/ab978c Huang, 2018, MoS2 solid-lubricating film fabricated by atomic layer deposition on Si substrate, AIP Adv., 8, 10.1063/1.5021051 Chen, 2019, Very high refractive index transition metal dichalcogenide photonic conformal coatings by conversion of ALD metal oxides, Sci. Rep., 9, 2768, 10.1038/s41598-019-39115-3 Krick, 2012, Optical in situ Micro Tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments, Tribol. Lett., 45, 185, 10.1007/s11249-011-9870-y Burris, 2009, Addressing practical challenges of low friction coefficient measurements, Tribol. Lett., 35, 17, 10.1007/s11249-009-9438-2 Colbert, 2011, Uncertainty in pin-on-disk wear volume measurements using surface scanning techniques, Tribol. Lett., 42, 129, 10.1007/s11249-010-9744-8 Park, 2014, Use of permanent marker to deposit a protection layer against FIB damage in TEM specimen preparation, J. Microsc., 255, 180, 10.1111/jmi.12150 Kotula, 2003, Automated analysis of SEM X-ray spectral images: a powerful new microanalysis tool, Microsc. Microanal., 9, 1, 10.1017/S1431927603030058 Babuska, 2022, Role of environment on the shear-induced structural evolution of MoS2 and impact on oxidation and tribological properties for space applications, ACS Appl. Mater. Interfaces, 14, 13914, 10.1021/acsami.1c24931 Wahl, 1995, Quantification of a lubricant transfer process that enhances the sliding life of a MoS2 coating, Tribol. Lett., 59–66 Curry, 2021, Structurally driven environmental degradation of friction in MoS2 films, Tribol. Lett., 69, 96, 10.1007/s11249-021-01453-7 Fleischauer, 1988, Chemical and structural effects on the lubrication properties of sputtered MoS2 films, Tribol. Trans., 31, 239, 10.1080/10402008808981819 Babuska, 2022, Quality control metrics to assess MoS2 sputtered films for tribological applications, Tribol. Lett., 70, 10.1007/s11249-022-01642-y Scharf, 2010, Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings, Acta Mater., 58, 4100, 10.1016/j.actamat.2010.03.040 Seynstahl, 2021, Microstructure, mechanical properties and tribological behavior of magnetron-sputtered MoS2 solid lubricant coatings deposited under industrial conditions, Coatings, 10.3390/coatings11040455 Buck, 1986, Structure and density of sputtered MoS2 films, Vacuum, 36, 89, 10.1016/0042-207X(86)90277-0 Zabinski, 1993, Mechanistic study of the synergism between Sb203 and MoS2 lubricant systems using Raman spectroscopy, Wear, 103–108