Tribological behavior of few-nanometer-thick MoS2 prepared by low-temperature conversion of atomic layer deposited MoOx films
Tài liệu tham khảo
Bala, 2022, Low-temperature plasma-assisted growth of large-area MoS 2 for transparent phototransistors, Adv. Funct. Mater., 32, 2205106, 10.1002/adfm.202205106
Ahn, 2015, Low-temperature synthesis of large-scale molybdenum disulfide thin films directly on a plastic substrate using plasma-enhanced chemical vapor deposition, Adv. Mater., 27, 5223, 10.1002/adma.201501678
Liu, 2020, Growth of multiorientated polycrystalline MoS2 using plasma-enhanced chemical vapor deposition for efficient hydrogen evolution reactions, Nanomaterials (Basel), 10
Hilton, 1992, Applications of solid lubricant films in spacecraft, Surf. Coat. Technol., 54–55, 435, 10.1016/S0257-8972(07)80062-4
Donnet, 1996, Super-low friction of MoS2 coatings in various environments, Tribol. Int., 29, 123, 10.1016/0301-679X(95)00094-K
Le Mogne, 1994, Nature of super-lubricating MoS2 physical vapor deposition coatings, J. Vac. Sci. Technol. A, 12, 1998, 10.1116/1.578996
Liu, 2015, CVD growth of MoS2-based two-dimensional materials, Chem. Vap. Depos., 21, 241, 10.1002/cvde.201500060
Kotsakidis, 2019, Oxidation of monolayer WS2 in ambient is a Photoinduced process, Nano Lett., 19, 5205, 10.1021/acs.nanolett.9b01599
Valdivia, 2016, Atomic layer deposition of two dimensional MoS2 on 150 mm substrates, J. Vac. Sci. Technol. A, 34, 10.1116/1.4941245
Jang, 2016, Wafer-scale, conformal and direct growth of MoS2 thin films by atomic layer deposition, Appl. Surf. Sci., 365, 160, 10.1016/j.apsusc.2016.01.038
Pyeon, 2016, Wafer-scale growth of MoS2 thin films by atomic layer deposition, Nanoscale, 8, 10792, 10.1039/C6NR01346E
Curry, 2016, Highly oriented MoS2 coatings: tribology and environmental stability, Tribol. Lett., 64, 11, 10.1007/s11249-016-0745-0
Curry, 2017, Impact of microstructure on MoS2 oxidation and friction, ACS Appl. Mater. Interfaces, 9, 28019, 10.1021/acsami.7b06917
Zabinski, 2006, Multi-environmental lubrication performance and lubrication mechanism of MoS2/Sb2O3/C composite films, Tribol. Lett., 23, 155, 10.1007/s11249-006-9057-0
Spalvins, 1982, Morphological and frictional behavior of sputtered MoS2 films, Thin Solid Films, 96, 17, 10.1016/0040-6090(82)90208-5
Spalvins, 1980, Tribological properties of sputtered MoS2 films in relation to film morphology, Thin Solid Films, 73, 291, 10.1016/0040-6090(80)90492-7
Hilton, 1990, Tribological performance and deformation of sputter-deposited MoS2 solid lubricant films during sliding wear and indentation contact, Thin Solid Films, 188, 219, 10.1016/0040-6090(90)90285-L
Buck, 1987, Preparation and properties of different types of sputtered MoS2 films, Wear., 114, 264, 10.1016/0043-1648(87)90116-5
Demirtaş, 2020, Layer and size distribution control of CVD-grown 2D MoS2 using ALD-deposited MoO3 structures as the precursor, Mater. Sci. Semicond. Process., 108, 10.1016/j.mssp.2019.104880
Martella, 2016, Engineering the growth of MoS2via atomic layer deposition of molybdenum oxide film precursor, Adv. Electron. Mater., 2, 1600330, 10.1002/aelm.201600330
Keller, 2017, Process control of atomic layer deposition molybdenum oxide nucleation and sulfidation to large-area MoS2 monolayers, Chem. Mater., 29, 2024, 10.1021/acs.chemmater.6b03951
Sharma, 2020, Large area, patterned growth of 2D MoS2 and lateral MoS2–WS2 heterostructures for nano- and opto-electronic applications, Nanotechnology, 31, 10.1088/1361-6528/ab7593
Yang, 2019, Trickle flow aided atomic layer deposition (ALD) strategy for ultrathin molybdenum disulfide (MoS2) synthesis, ACS Appl. Mater. Interfaces, 11, 36270, 10.1021/acsami.9b12023
Kim, 2016, Self-limiting layer synthesis of transition metal dichalcogenides, Sci. Rep., 6, 18754, 10.1038/srep18754
Ho, 2017, Edge-on MoS2 thin films by atomic layer deposition for understanding the interplay between the active area and hydrogen evolution reaction, Chem. Mater., 29, 7604, 10.1021/acs.chemmater.7b03212
Joe, 2018, Mixed-phase (2H and 1T) MoS2 catalyst for a highly efficient and stable Si photocathode, Catalysts, 8, 580, 10.3390/catal8120580
Oh, 2017, Atomic layer deposited molybdenum disulfide on Si photocathodes for highly efficient photoelectrochemical water reduction reaction, J. Mater. Chem. A Mater. Energy Sustain., 5, 3304, 10.1039/C6TA10707A
McCrory, 2015, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices, J. Am. Chem. Soc., 137, 4347, 10.1021/ja510442p
Desai, 2016, MoS2 transistors with 1-nanometer gate lengths, Science, 354, 99, 10.1126/science.aah4698
Long, 2016, High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2Detection, Adv. Funct. Mater., 26, 5158, 10.1002/adfm.201601562
Hochanadel, 1994, Heat treatment of investment cast PH 13-8 Mo stainless steel: part I. mechanical properties and microstructure, Metall. Mater. Trans. A., 25, 789, 10.1007/BF02665455
Huang, 2016, A high temperature mechanical study on PH 13-8 Mo maraging steel, Mater. Sci. Eng. A, 651, 574, 10.1016/j.msea.2015.10.077
Seetharaman, 1981, Precipitation hardening in a PH 13-8 Mo stainless steel, Mater. Sci. Eng., 47, 1, 10.1016/0025-5416(81)90034-3
Yang, 2020, Nanotribological properties of 2-D MoS2 on different substrates made by atomic layer deposition (ALD), Appl. Surf. Sci., 502, 10.1016/j.apsusc.2019.144402
Yang, 2020, Plasma-assisted friction control of 2D MoS2 made by atomic layer deposition, Nanotechnology., 31, 10.1088/1361-6528/ab978c
Huang, 2018, MoS2 solid-lubricating film fabricated by atomic layer deposition on Si substrate, AIP Adv., 8, 10.1063/1.5021051
Chen, 2019, Very high refractive index transition metal dichalcogenide photonic conformal coatings by conversion of ALD metal oxides, Sci. Rep., 9, 2768, 10.1038/s41598-019-39115-3
Krick, 2012, Optical in situ Micro Tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments, Tribol. Lett., 45, 185, 10.1007/s11249-011-9870-y
Burris, 2009, Addressing practical challenges of low friction coefficient measurements, Tribol. Lett., 35, 17, 10.1007/s11249-009-9438-2
Colbert, 2011, Uncertainty in pin-on-disk wear volume measurements using surface scanning techniques, Tribol. Lett., 42, 129, 10.1007/s11249-010-9744-8
Park, 2014, Use of permanent marker to deposit a protection layer against FIB damage in TEM specimen preparation, J. Microsc., 255, 180, 10.1111/jmi.12150
Kotula, 2003, Automated analysis of SEM X-ray spectral images: a powerful new microanalysis tool, Microsc. Microanal., 9, 1, 10.1017/S1431927603030058
Babuska, 2022, Role of environment on the shear-induced structural evolution of MoS2 and impact on oxidation and tribological properties for space applications, ACS Appl. Mater. Interfaces, 14, 13914, 10.1021/acsami.1c24931
Wahl, 1995, Quantification of a lubricant transfer process that enhances the sliding life of a MoS2 coating, Tribol. Lett., 59–66
Curry, 2021, Structurally driven environmental degradation of friction in MoS2 films, Tribol. Lett., 69, 96, 10.1007/s11249-021-01453-7
Fleischauer, 1988, Chemical and structural effects on the lubrication properties of sputtered MoS2 films, Tribol. Trans., 31, 239, 10.1080/10402008808981819
Babuska, 2022, Quality control metrics to assess MoS2 sputtered films for tribological applications, Tribol. Lett., 70, 10.1007/s11249-022-01642-y
Scharf, 2010, Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings, Acta Mater., 58, 4100, 10.1016/j.actamat.2010.03.040
Seynstahl, 2021, Microstructure, mechanical properties and tribological behavior of magnetron-sputtered MoS2 solid lubricant coatings deposited under industrial conditions, Coatings, 10.3390/coatings11040455
Buck, 1986, Structure and density of sputtered MoS2 films, Vacuum, 36, 89, 10.1016/0042-207X(86)90277-0
Zabinski, 1993, Mechanistic study of the synergism between Sb203 and MoS2 lubricant systems using Raman spectroscopy, Wear, 103–108