Triazatruxene–Rhodamine-Based Ratiometric Fluorescent Chemosensor for the Sensitive, Rapid Detection of Trivalent Metal Ions: Aluminium (III), Iron (III) and Chromium (III)

Journal of Fluorescence - Tập 30 Số 1 - Trang 213-220 - 2020
Ali Enis Sadak1, Erman Karakuş1
1Organic Chemistry Laboratory, Chemistry Group, National Metrology Institute, (TUBITAK UME) Scientific and Technological Research Council of Turkey, 41470, Gebze, Kocaeli, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

Flaten TP, Ødegård M (1988) Tea, aluminium and Alzheimer’s disease. Food Chem Toxicol 26:959–960. https://doi.org/10.1016/0278-6915(88)90095-6

Rogers MA, Simon DG (1999) A preliminary study of dietary aluminium intake and risk of Alzheimer’s disease. Age Ageing 28:205–209. https://doi.org/10.1093/ageing/28.2.205

Gunsé B, Garzón T, Barceló J (2003) Study of aluminum toxicity by means of vital staining profiles in four cultivars ofPhaseolus vulgaris L. J Plant Physiol 160:1447–1450. https://doi.org/10.1078/0176-1617-01001

Gupta VK, Shoora SK, Kumawat LK, Jain AK (2015) A highly selective colorimetric and turn-on fluorescent chemosensor based on 1-(2-pyridylazo)-2-naphthol for the detection of aluminium(III) ions. Sensors Actuators B Chem 209:15–24. https://doi.org/10.1016/j.snb.2014.10.143

Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2012) Fluorescent Chemosensors based on Spiroring-opening of Xanthenes and related derivatives. Chem Rev 112:1910–1956. https://doi.org/10.1021/cr200201z

Sen S, Sarkar S, Chattopadhyay B, Moirangthem A, Basu A, Dhara K, Chattopadhyay P (2012) A ratiometric fluorescent chemosensor for iron: discrimination of Fe2+ and Fe3+ and living cell application. Analyst 137:3335–3342. https://doi.org/10.1039/C2AN35258C

Bonda DJ, Lee H-g, Blair JA, Zhu X, Perry G, Smith MA (2011) Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics 3:267–270. https://doi.org/10.1039/C0MT00074D

Erdemir S, Kocyigit O (2016) Anthracene excimer-based “turn on” fluorescent sensor for Cr3+ and Fe3+ ions: its application to living cells. Talanta 158:63–69. https://doi.org/10.1016/j.talanta.2016.05.017

Lo Presti M, El Sayed S, Martínez-Máñez R, Costero AM, Gil S, Parra M, Sancenón F (2016) Selective chromo-fluorogenic detection of trivalent cations in aqueous environments using a dehydration reaction. New J Chem 40:9042–9045. https://doi.org/10.1039/C6NJ01957A

von Haehling S, Anker SD (2014) Eisenmangel bei chronischer Herzinsuffizienz: Von der diagnose zur Therapie (Iron deficiency in chronic heart failure: from diagnosis to therapy). Dtsch Med Wochenschr 139:841–844. https://doi.org/10.1055/s-0034-1369988

Gupta VK, Jain AK, Agarwal S, Maheshwari G (2007) An iron(III) ion-selective sensor based on a μ-bis(tridentate) ligand. Talanta 71:1964–1968. https://doi.org/10.1016/j.talanta.2006.08.038

Arakawa H, Ahmad R, Naoui M, Tajmir-Riahi HA (2000) A comparative study of calf thymus DNA binding to Cr(III) and Cr(VI) ions. Evidence for the guanine N-7-chromium-phosphate chelate formation. J Biol Chem 275:10150–10153. https://doi.org/10.1074/jbc.275.14.10150

Mertz W, Schwarz K (1955) Impaired intravenous glucose tolerance as an early sign of dietary necrotic liver degeneration. Arch Biochem Biophys 58:504–506. https://doi.org/10.1016/0003-9861(55)90151-X

Singh AK, Gupta VK, Gupta B (2007) Chromium(III) selective membrane sensors based on Schiff bases as chelating ionophores. Anal Chim Acta 585:171–178. https://doi.org/10.1016/j.aca.2006.11.074

Dey S, Sarkar S, Maity D, Roy P (2017) Rhodamine based chemosensor for trivalent cations: synthesis, spectral properties, secondary complex as sensor for arsenate and molecular logic gates. Sensors Actuators B Chem 246:518–534. https://doi.org/10.1016/j.snb.2017.02.094

Kilic H, Bozkurt E (2018) A rhodamine-based novel turn on trivalent ions sensor. J Photochem Photobiol A Chem 363:23–30. https://doi.org/10.1016/j.jphotochem.2018.05.024

Wang H, Kang T, Wang X, Feng L (2018) Design and synthesis of a novel tripod rhodamine derivative for trivalent metal ions detection. Sensors Actuators B Chem 264:391–397. https://doi.org/10.1016/j.snb.2018.03.003

Wang J, Li Y, Patel NG, Zhang G, Zhou D, Pang Y (2014) A single molecular probe for multi-analyte (Cr3+, Al3+ and Fe3+) detection in aqueous medium and its biological application. Chem Commun 50:12258–12261. https://doi.org/10.1039/C4CC04731A

Chen X, Shen XY, Guan E, Liu Y, Qin A, Sun JZ, Tang BZ (2013) A pyridinyl-functionalized tetraphenylethylene fluorogen for specific sensing of trivalent cations. Chem Commun (Camb) 49:1503–1505. https://doi.org/10.1039/c2cc38246f

Chereddy NR, Nagaraju P, Niladri Raju MV, Krishnaswamy VR, Korrapati PS, Bangal PR, Rao VJ (2015) A novel FRET ‘off–on’ fluorescent probe for the selective detection of Fe3+, Al3+ and Cr3+ ions: its ultrafast energy transfer kinetics and application in live cell imaging. Biosens Bioelectron 68:749–756. https://doi.org/10.1016/j.bios.2015.01.074

Chereddy NR, Raju MVN, Reddy BM, Krishnaswamy VR, Korrapati PS, Reddy BJM, Rao VJ (2016) A TBET based BODIPY-rhodamine dyad for the ratiometric detection of trivalent metal ions and its application in live cell imaging. Sensors Actuators B Chem 237:605–612. https://doi.org/10.1016/j.snb.2016.06.131

Goswami S, Aich K, Das AK, Manna A, Das S (2013) A naphthalimide–quinoline based probe for selective, fluorescence ratiometric sensing of trivalent ions. RSC Adv 3:2412–2416. https://doi.org/10.1039/C2RA22624C

Santos-Figueroa LE, Llopis-Lorente A, Royo S, Sancenón F, Martínez-Máñez R, Costero AM, Gil S, Parra M (2015) A Chalcone-based highly selective and sensitive Chromofluorogenic probe for trivalent metal Cations. ChemPlusChem 80:800–804. https://doi.org/10.1002/cplu.201500042

Gallego-Gómez F, García-Frutos EM, Villalvilla JM, Quintana JA, Gutierrez-Puebla E, Monge A, Díaz-García MA, Gómez-Lor B (2011) Very large photoconduction enhancement upon self-assembly of a new Triindole derivative in solution-processed films. Adv Funct Mater 21:738–745. https://doi.org/10.1002/adfm.201000956

García-Frutos EM, Coya C, Gutierrez E, Monge A, Ad A, Gómez-Lor B (2010) New triindole-based organic semiconductors: structure-property relationships. Org Electron 7778:8. https://doi.org/10.1117/12.860553

García-Frutos EM, Gómez-Lor B, Monge Á, Gutiérrez-Puebla E, Alkorta I, Elguero J (2008) Synthesis and preferred all-syn conformation of C3-symmetrical N-(hetero)arylmethyl Triindoles. Chem Eur J 14:8555–8561. https://doi.org/10.1002/chem.200800911

Lai W-Y, He Q-Y, Zhu R, Chen Q-Q, Huang W (2008) Kinked star-shaped Fluorene/ Triazatruxene co-oligomer hybrids with enhanced functional properties for high-performance, solution-processed, blue organic light-emitting diodes. Adv Funct Mater 18:265–276. https://doi.org/10.1002/adfm.200700224

Lai W-Y, Zhu R, Fan Q-L, Hou L-T, Cao Y, Huang W (2006) Monodisperse six-armed Triazatruxenes: microwave-enhanced synthesis and highly efficient pure-deep-blue electroluminescence. Macromolecules 39:3707–3709. https://doi.org/10.1021/ma060154k

Franceschin M, Ginnari-Satriani L, Alvino A, Ortaggi G, Bianco A (2010) Study of a convenient method for the preparation of Hydrosoluble fluorescent Triazatruxene derivatives. Eur J Org Chem 2010:134–141. https://doi.org/10.1002/ejoc.200900869

Ginnari-Satriani L, Casagrande V, Bianco A, Ortaggi G, Franceschin M (2009) A hydrophilic three side-chained triazatruxene as a new strong and selective G-quadruplex ligand. Org Biomol Chem 7:2513–2516. https://doi.org/10.1039/B904723A

Xie Y-F, Ding S-Y, Liu J-M, Wang W, Zheng Q-Y (2015) Triazatruxene based covalent organic framework and its quick-response fluorescence-on nature towards electron rich arenes. J Mater Chem C 3:10066–10069. https://doi.org/10.1039/C5TC02256H

Xu Y, Wu X, Chen Y, Hang H, Tong H, Wang L (2016) Star-shaped triazatruxene derivatives for rapid fluorescence fiber-optic detection of nitroaromatic explosive vapors. RSC Adv 6:31915–31918. https://doi.org/10.1039/C6RA04553G

Wang K-R, An H-W, Han D, Qian F, Li X-L (2013) Fluorescence quenching of triazatruxene-based glycocluster induced by peanut agglutinin lectin. Chin Chem Lett 24:467–470. https://doi.org/10.1016/j.cclet.2013.03.032

Wang K-R, Wang Y-Q, An H-W, Zhang J-C, Li X-L (2013) A Triazatruxene-based Glycocluster as a fluorescent sensor for Concanavalin A. Chem Eur J 19:2903–2909. https://doi.org/10.1002/chem.201200905

Sadak AE, Gören AC, Bozdemir ÖA, Saraçoğlu N (2017) Synthesis of novel meso-Indole- and meso-Triazatruxene-BODIPY dyes. ChemistrySelect 2:10512–10516. https://doi.org/10.1002/slct.201701897

Dujols V, Ford F, Czarnik AW (1997) A long-wavelength fluorescent Chemodosimeter selective for Cu(II) ion in water. J Am Chem Soc 119:7386–7387. https://doi.org/10.1021/ja971221g