Trends in the P/M hard metal industry

Susanne Norgren1, J. García2, Andreas Blomqvist2, Lei Yin3
1Sandvik Mining R&D, Rock Tools, 126 80, Stockholm, Sweden
2Sandvik Coromant R&D, 126 80, Stockholm, Sweden
3Sandvik Hard Materials R&D, Wuxi, Jiangsu, 214028, PR China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zeiler, 2012

North, 2005, Global trends in hard materials

REACH

Fernández, 1989, Thermodynamic properties of the Co–WC system, Metall Trans, 20A, 935

Fernández Guillermet, 1989, An assessment of the Fe–Ni–W–C phase diagram, Z Metallkd, 80, 83

Gustafson, 1987, A thermodynamic evaluation of the C–Fe–W System, Metall Trans A, 18, 175, 10.1007/BF02825699

Markström, 2005, A revised thermodynamic description of the Co–WC system, J Phase Equilib Diffus, 26, 152, 10.1007/s11669-005-0133-1

Fernandes, 2011, Cemented carbide phase diagrams: a review, Int J Refract Met Hard Mater, 29, 405, 10.1016/j.ijrmhm.2011.02.004

Åkesson, 1982

Kruse, 2001, Experimental study of invariant equilibria in the Co–WC and Co–WC–Me (Me=Ti, Ta, Nb) systems, J Phase Equilib Diffus, 22, 552, 10.1007/s12385-001-0073-3

Frisk, 2008, Effect of Cr and V on phase equilibria in Co–WC based hard metals, Int J Mater Res, 99, 287, 10.3139/146.101632

Kurlov, 2006, Tungsten carbides and WC phase diagram, Inorg Mater, 42, 121, 10.1134/S0020168506020051

Lukas, 2007, Computational thermodynamics

Shi, 2005, Thermo-Calc and DICTRA enhance mat design and processing, Mater Sci Forum, 475–479, 3339, 10.4028/www.scientific.net/MSF.475-479.3339

Andersson, 1990, Fundamentals and applications of ternary diffusion, 153

Ekroth, 2000, Gradient zones in WC–Ti (C, N)–Co-based cemented carbides: experimental study and computer simulations, Acta Mater, 48, 2177, 10.1016/S1359-6454(00)00029-X

Chen, 2012, Chin J Non-Ferrous Met, 22, 1440

García, 2011, Kinetics of formation of graded layers on cemented carbides: experimental investigations and DICTRA simulations, Int J Refract Met Hard Mater, 29, 256, 10.1016/j.ijrmhm.2010.11.003

Frisk, 2013, Applying computational thermodynamics and kinetics to analyze the effect of N in hardmetals

Grearson, 2005, The future of fine grain hard metals

Henjered, 1986, Quantitative microanalysis of carbide/carbide interfaces in WC–Co-base cemented carbides, Mater Sci Technol, 2, 847, 10.1179/mst.1986.2.8.847

Östberg, 2002, Effect of Σ2 grain boundaries on plastic deformation of WC–Co cemented carbides, 85

Weidow, 2010, Grain and phase boundary segregation in WC–Co with small V, Cr or Mn additions, Acta Mater, 58, 3888, 10.1016/j.actamat.2010.03.038

Vicens, 1988, Structural analysis and properties of grain boundaries in hexagonal carbides, J Phys, 49, 271

Vicens, 1994, Cobalt intergranular segregation in WC–Co composites, J Mater Sci, 29, 987, 10.1007/BF00351421

Lay, 2003, Structure and role of the interfacial layers in VC-rich WC–Co cermets, Philos Mag, 83, 1175, 10.1080/1478643031000075759

Hagège, 1986, Structural analysis and properties of grain boundaries in hexagonal carbides, Jpn Inst Met, 27, 163

Kumar, 2006, An analysis of grain boundaries and grain growth in cemented tungsten carbide using orientation imaging microscopy, Metall Mater Trans A, 37, 599, 10.1007/s11661-006-0032-z

Mannesson, 2008, Analysis of WC grain growth during sintering using electron backscatter diffraction and image analysis, Int J Refract Met Hard Mater, 2, 449, 10.1016/j.ijrmhm.2007.10.004

Christensen, 2003, Co-phase penetration of WC (1010)/WC (1010) grain boundaries from first principles, Phys Rev B, 67, 115415, 10.1103/PhysRevB.67.115415

Christensen, 2004, Effects of cobalt intergranular segregation on interface energetics in WC–Co, Acta Mater, 52, 2199, 10.1016/j.actamat.2004.01.013

Lay, 2008, Morphology of WC grains in WC–Co alloys, Mater Sci Eng A, 486, 253, 10.1016/j.msea.2007.09.019

Li, 2011, Theoretical study on the electronic properties and stabilities of low-index surfaces of WC polymorphs, Comput Mater Sci, 50, 939, 10.1016/j.commatsci.2010.10.033

Gao, 2013, On the formation of WC1−x in nanocrystalline cemented carbides, Scr Mater, 68, 108, 10.1016/j.scriptamat.2012.09.016

Götelid, 2000, Influence of O and Co on the early stages of sintering of WC–Co: a surface study by AES and STM, Acta Mater, 48, 4357, 10.1016/S1359-6454(00)00210-X

Zavodinsky, 2011, Ab initio study of the fcc-WC (100) surface and its interaction with cobalt monolayers, Appl Surf Sci, 257, 3581, 10.1016/j.apsusc.2010.11.080

Zavodinsky, 2011, Cobalt layers crystallized on the WC (100) surface: spin-polarized ab initio study, Int J Refract Met Hard Mater, 29, 184, 10.1016/j.ijrmhm.2010.10.005

Egami, 1993, Morphology of vanadium carbide in submicron hardmetals

Taniguchi, 1997, Sintering behavior of VC-doped micro-grained cemented carbide

Jaroenworaluck, 1998, Effects of Cr3C2 and V8C7 on the microstructure and mechanical properties of WC–SiC whisker, Ceram Mater Res, 13, 2450, 10.1557/JMR.1998.0341

Yamamoto, 2000, High resolution transmission electron microscopy study in VC-doped WC–Co compound, Sci Technol Adv Mater, 1, 97, 10.1016/S1468-6996(00)00006-1

Lay, 2002, Location of VC in VC, Cr3C2 codoped WC–Co cermets by HREM and EELS, Int J Refract Met Hard Mater, 20, 61, 10.1016/S0263-4368(01)00071-3

Lay, 2003, Characteristics and origin of clusters in submicron WC–Co cermets, Philos Mag, 83, 2669, 10.1080/1478643031000136094

Kawakami, 2004, Effect of sintering cooling rate on V segregation amount at WC/Co interface in VC-doped WC–Co fine-grained hardmental, J Jpn Soc Powder Powder Metall, 51, 576, 10.2497/jjspm.51.576

Kawakami, 2005, Segregation amount of dopants at WC/Co interface in Cr3C2- and VC+Cr3C2-dopant WC–Co submicro-grained hardmetals, 653

Shatov, 1998, The shape of WC crystals in cemented carbides, Mater Sci Eng A, 242, 7, 10.1016/S0921-5093(97)00509-1

Engqvist, 1998, Microstructure and abrasive wear of binderless carbides, Int J Refract Met Hard Mater, 16, 309, 10.1016/S0263-4368(98)00034-1

Kawakami, 2006, HRTEM microstructure and segregation amount of dopants at WC/Co interfaces in TiC and TaC mono-doped WC–Co submicro-grained hardmetals, J Jpn Soc Powder Powder Metall, 53, 166, 10.2497/jjspm.53.166

Lay, 2006, Structural analysis on planar defects formed in WC platelets in Ti-doped WC–Co, J Am Ceram Soc, 89, 3229, 10.1111/j.1551-2916.2006.01218.x

Weidow, 2011, Grain and phase boundary segregation in WC–Co with TiC, ZrC, NbC or TaC additions, Int J Refract Met Hard Mater, 29, 38, 10.1016/j.ijrmhm.2010.06.010

Yamamoto, 2001, High resolution microscopy study in Cr3C2-doped WC–Co, J Mater Sci, 36, 3885, 10.1023/A:1017953701641

Delanoë, 2004, Cr-rich layer at the WC/Co interface in Cr-doped WC–Co cermets: segregation or metastable carbide?, J Cryst Growth, 270, 219, 10.1016/j.jcrysgro.2004.05.101

Delanoë, 2009, Evolution of the WC grain shape in WC–Co alloys during sintering: cumulated effect of the Cr addition and of the C content, Int J Refract Met Hard Mater, 27, 189, 10.1016/j.ijrmhm.2008.07.010

Elfwing, 2005, Study of solid-state sintered fine-grained cemented carbides, Int J Refract Met Hard Mater, 23, 242, 10.1016/j.ijrmhm.2005.03.006

Delanoë, 2009, Evolution of the WC grain shape in WC–Co alloys during sintering: effect of C content, Int J Refract Met Hard Mater, 27, 140, 10.1016/j.ijrmhm.2008.06.001

Johansson, 2010, Theory of ultrathin films at metal–ceramic interfaces, Phil Mag Lett, 90, 599, 10.1080/09500831003800863

Johansson, 2011, A computational study of thin cubic carbide films in WC/Co interfaces, Acta Mater, 59, 171, 10.1016/j.actamat.2010.09.021

Sugiyama, 2012, Formation of (W, V)Cx layers at the WC/Co interfaces in the VC-doped WC–Co cemented carbide, Int J Refract Met Hard Mater, 30, 185, 10.1016/j.ijrmhm.2011.08.006

Lay, 2012, Interface structure in a WC–Co alloy co-doped with VC and Cr3C2, J Mater Sci, 47, 1588, 10.1007/s10853-011-6156-6

Zavodinsky, 2012, Ab initio study of inhibitors influence on growth of WC crystallites in WC/Co hard alloys, Int J Refract Met Hard Mater, 31, 263, 10.1016/j.ijrmhm.2011.12.006

Johansson, 2012, First-principles study of an interfacial phase diagram in the V-doped WC–Co system, Phys Rev B, 86, 035403, 10.1103/PhysRevB.86.035403

Exner, 1979, Physical and chemical nature of cemented carbides, Int Met Rev, 4, 149

Bounhoure, 2008, Special WC/Co orientation relationships at basal facets of WC grains in WC–Co alloys, J Mater Sci, 43, 892, 10.1007/s10853-007-2181-x

Slabanja, 2009, Energetics and structure of interfaces in WC–Co alloys from first principles calculations

Bounhoure, 2009, Discussion of nonconventional effects in solid-state sintering of cemented carbides, J Am Ceram Soc, 92, 1396, 10.1111/j.1551-2916.2009.02993.x

Schubert, 1981, Phasengleichgewichte in den Systemen Co–Mo–W–C und Ni–Mo–W–C

Upadhyaya, 2001, Material science of cemented carbide — an overview, Mater Des, 22, 483, 10.1016/S0261-3069(01)00007-3

Rudy, 1969, 497

Suetin, 2009, Electronic properties of hexagonal tungsten monocarbide (h-WC) with 3d impurities from first-principles calculations, Physica B, 404, 1887, 10.1016/j.physb.2008.10.032

Weidow, 2011, Transition metal solubilities in WC in cemented carbide materials, J Am Ceram Soc, 94, 605, 10.1111/j.1551-2916.2010.04122.x

Schubert WD. Doped hexagonal tungsten carbide and method to produce the same. WO patent 2012/145773A1. 2012.

Weidow, 2013, Analysis of WC with increased TA doping

Gladyshevskii, 1967, The ternary system W–Cr–C, Invest Akad Nauk SSSR Metall, 1, 190

Tükör, 2009, Formation of WC–Cr-phases during the production of Cr-doped WC powders

Brieseck, 2010, Diffusion and solubility of Cr in WC, J Alloy Comp, 489, 408, 10.1016/j.jallcom.2009.09.137

Qiao, 2008, A novel (W–Al)–C–Co composite cemented carbide prepared by mechanical alloying and hot-pressing sintering, Int J Refract Met Hard Mater, 26, 251, 10.1016/j.ijrmhm.2007.04.002

Tang, 2002, Preparation of W–Al alloys by mechanical alloying, J Alloy Comp, 347, 228, 10.1016/S0925-8388(02)00760-0

Qiao, 2009, Microstructure, thermal stability and mechanical properties of the novel (W1−xAlx)C–Co (x=0.2, 0.33, 0.4, 0.5) cemented carbide, Int J Refract Met Hard Mater, 27, 48, 10.1016/j.ijrmhm.2008.03.002

Suetin, 2008, Structural, elastic and electronic properties and formation energies for hexagonal (W0.5Al0.5)C in comparison with binary carbides WC and Al4C3 from first-principles calculations, Physica B, 403, 2654, 10.1016/j.physb.2008.01.045

Yan, 2004, Synthesis, crystal structure, and density of (W1−xAlx)C, J Solid State Chem, 177, 2265, 10.1016/j.jssc.2004.03.009

Wild, 2000, Lung cancer mortality in a site producing hard metals, Occup Environ Med, 57, 568, 10.1136/oem.57.8.568

Bastian, 2009, Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells in vitro, Environ Health Perspect, 117, 530, 10.1289/ehp.0800121

Richter, 2008, Evaluation of health risks of nano and microparticles, Powder Metall, 51, 8, 10.1179/174329008X286640

Gries, 2007

Prakash, 1993, A review of the properties of WC hardmetals with alternative binder systems, vol. 2

Gille, 2000, Advanced and new grades of WC and binder powder — their properties and application, Int J Refract Met Hard Mater, 18, 87, 10.1016/S0263-4368(00)00002-0

Prakash, 2009, WC hardmetals with iron based binders

J. García, 2013

Mingard, 2011, Some aspects of the structure of cobalt and nickel binder phases in hardmetals, Acta Mater, 59, 2277, 10.1016/j.actamat.2010.12.004

Rong, 2012, Ultrafine WC–Ni cemented carbides fabricated by spark plasma sintering, Mater Sci Eng A, 532, 543, 10.1016/j.msea.2011.10.119

Wittmann, 2002, WC grain growth and grain growth inhibition in nickel and iron binder hardmetals, Int J Refract Met Hard Mater, 20, 51, 10.1016/S0263-4368(01)00070-1

Shatov, 2009, Modeling the effect of flatter shape of WC crystals on the hardness of WC–Ni cemented carbides, Int J Refract Met Hard Mater, 27, 198, 10.1016/j.ijrmhm.2008.07.008

Ren, 2013, Effect of SiC nano-whisker addition on WC–Ni based cemented carbides fabricated by hot-press sintering, Int J Refract Met Hard Mater, 36, 294, 10.1016/j.ijrmhm.2012.10.009

Rong, 2011, Microstructure and mechanical properties of ultrafine WC–Ni–VC–TaC–cBN cemented carbides fabricated by spark plasma sintering, Int J Refract Met Hard Mater, 29, 733, 10.1016/j.ijrmhm.2011.06.004

Aristizabal, 2012, Comparison of the friction and wear behaviour of WC–Ni–Co–Cr and WC–Co hardmetals in contact with steel at high temperatures, Wear, 280–281, 15, 10.1016/j.wear.2012.01.015

Correa, 2010, Microstructure and mechanical properties of WC Ni–Si based cemented carbides developed by powder metallurgy, Int J Refract Met Hard Mater, 28, 572, 10.1016/j.ijrmhm.2010.04.003

Carpenter, 2011, Hardmetal products made from pre-alloyed binder

Guo, 2010, Characterization and properties of MTCVD Ti(C, N) coated cemented carbide substrates with Fe/Ni binder, Int J Refract Met Hard Mater, 28, 238, 10.1016/j.ijrmhm.2009.10.004

Fernandez, 2008, Mechanical characterization of composites prepared from WC powders coated with Ni rich binders, Int J Refract Met Hard Mater, 26, 491, 10.1016/j.ijrmhm.2007.12.001

Guo, 2009, Microstructure and properties of Ti(C, N)–Mo2C–Fe cermets, Int J Refract Met Hard Mater, 7, 781, 10.1016/j.ijrmhm.2009.01.003

Alvaredo, 2013, Influence of carbon content on the sinterability of an FeCr matrix cermet reinforced with TiCN, Int J Refract Met Hard Mater, 36, 283, 10.1016/j.ijrmhm.2012.10.007

Alvaredo, 2012, Microstructural development and mechanical properties of iron based cermets processed by pressureless and spark plasma sintering, Mater Sci Eng A, 538, 28, 10.1016/j.msea.2011.12.107

Bradley Collier, 2012, Spherical indentation damage in TiC–Ni3Al composites, Int J Refract Met Hard Mater, 30, 188, 10.1016/j.ijrmhm.2011.08.008

Habibi Rad, 2012, Investigation of the corrosion behavior of WC–FeAl–B composites in aqueous media, Int J Refract Met Hard Mater, 35, 62, 10.1016/j.ijrmhm.2012.04.005

Suzuki, 1981, The beta-free layer formed near the surface of vacuum-sintered WC–beta-Co alloys containing nitrogen, Trans Jpn Inst Met., 22, 758, 10.2320/matertrans1960.22.758

Nemeth BJ, Grab GP. Preferentially binder enriched cemented carbide bodies and method of manufacture US Patent 4,610,931;1987.

Schwarzkopf, 1988, Kinetics of compositional modification of (W, Ti)C–WC–Co alloy surfaces, Mater Sci Eng A, 105/106, 225, 10.1016/0025-5416(88)90500-9

Fischer UKR, Hartzell ET, Akerman JGH. Cemented carbide body used preferably for rock drilling and mineral cutting. US Patent No. 4,743,515, 1988 and Fischer UKR, Hartzell ET, Akerman JGH. Cemented carbide body with a binder phase gradient and method of making the same. US Patent No. 4,820,482; 1989.

2013, Special issue on functionally graded cemented carbides, Int J Refract Met Hard Mater, 36, 1

García, 2011, Investigations on kinetics of formation of fcc-free surface layers on cemented carbides with Fe–Ni–Co binders, Int J Refract Met Hard Mater, 29, 306, 10.1016/j.ijrmhm.2010.12.007

García, 2012, Influence of Fe–Ni–Co binder composition on nitridation of cemented carbide, Int J Refract Met Hard Mater, 30, 114, 10.1016/j.ijrmhm.2011.07.012

Mohammadpour, 2012, Effect of cobalt replacement by nickel on functionally graded cemented carbonitrides, Int J Refract Met Hard Mater, 30, 42, 10.1016/j.ijrmhm.2011.07.001

Borgh, 2012, Influence of nitrogen gas pressure on the miscibility gap in the Ti–Zr carbonitride system, Int J Refract Met Hard Mater, 32, 11, 10.1016/j.ijrmhm.2011.12.014

García, 2013, Effect of cubic carbide composition and sintering parameters on the formation of wear resistant surfaces on cemented carbides, Int J Refract Met Hard Mater, 36, 66, 10.1016/j.ijrmhm.2011.05.004

Barbatti, 2008, Influence of nitridation on surface microstructure and properties of graded cemented carbides with Co and Ni binders, Surf Coat Technol, 202, 5962, 10.1016/j.surfcoat.2008.06.179

Barbatti, 2006, Influence of binder metal and surface treatment on the corrosion resistance of (W, Ti)C-based hardmetals, Surf Coat Technol, 201, 3314, 10.1016/j.surfcoat.2006.07.135

Gustafson, 1994, Binder-phase enrichment by dissolution of cubic carbides, Int J Refract Met Hard Mater, 12, 129, 10.1016/0263-4368(93)90062-K

Frykholm, 2003, A new labyrinth factor for modelling the effect of binder volume fraction on gradient sintering of cemented carbides, Acta Mater, 51, 1115, 10.1016/S1359-6454(02)00515-3

García, 2011, Experimental investigations and DICTRA simulations on formation of diffusion-controlled fcc-rich surface layers on cemented carbides, Appl Surf Sci, 257, 8894, 10.1016/j.apsusc.2011.05.024

Mohammadpour, 2012, Study of cemented carbonitrides with nickel as binder: experimental investigations and computer calculations, Int J Refract Met Hard Mater, 31, 164, 10.1016/j.ijrmhm.2011.10.011

Janisch, 2013, Nitridation sintering of WC–Ti(C, N)–(Ta, Nb)C–Co hardmetals, Int J Refract Met Hard Mater, 36, 22, 10.1016/j.ijrmhm.2011.12.013

Glühmann, 2013, Functionally graded WC–Ti(C, N)–(Ta, Nb)C–Co hardmetals: metallurgy and performance, Int J Refract Met Hard Mater, 36, 38, 10.1016/j.ijrmhm.2011.12.009

García, 2013, The role of cemented carbide functionally graded outer-layers on the wear performance of coated cutting tools, Int J Refract Met Hard Mater, 36, 52, 10.1016/j.ijrmhm.2011.12.007

Fischer UKR, Hartzell ET, Åkerman JGH Cemented carbide body with increased wear resistance. US Patent No. 5,856,626;1999. & Hartzell ET, Akerman JGH, Fischer UKR. Cemented carbide body used preferably for abrasive rock drilling and mineral cutting. US Patent No. 5,401,461;1995. & Åkerman JGH, Fischer UKR, Hartzell ET. Cemented carbide body with extra tough behavior. US Patent No. 5,453,241;1995.

Guo, 2011, Kinetics of the formation of metal binder gradient in WC–Co by carbon diffusion induced liquid migration, Acta Mater, 59, 4719, 10.1016/j.actamat.2011.04.019

Fan, 2013, Design of cobalt gradient via controlling carbon content and WC grain size in liquid-phase-sintered WC–Co composite, Int J Refract Met Hard Mater, 36, 2, 10.1016/j.ijrmhm.2012.02.006

Konyashin, 2013, Gradient WC–Co hardmetals: theory and practice, Int J Refract Met Hard Mater, 36, 10, 10.1016/j.ijrmhm.2011.12.010

Ren, 2013, A review of cemented carbides for rock drilling: an old but still tough challenge in geo-engineering, Int J Refract Met Hard Mater, 39, 61, 10.1016/j.ijrmhm.2013.01.003

Wang, 2013, Mechanical properties and wear resistance of functionally graded WC–Co, Int J Refract Met Hard Mater, 36, 10, 10.1016/j.ijrmhm.2012.04.011

Yunus, 2009

Wu, 2012, Numerical modelling of suction filling using DEM/CFD, Chem Eng Sci, 73, 231, 10.1016/j.ces.2012.01.048

Bierwisch, 2009, Three-dimensional discrete element models for the granular statics and dynamics of powders in cavity filling, J Mech Phys Solids, 57, 10, 10.1016/j.jmps.2008.10.006

Zadeh, 2010

Henderson, 2001, Micro-mechanical modelling of powder compaction, J Mech Phys Solids, 49, 739, 10.1016/S0022-5096(00)00055-7

Reiterer, 2004, Finite element simulation of cold isostatic pressing and sintering of SiC components, Ceram Int, 30, 177, 10.1016/S0272-8842(03)00086-5

McHugh, 1997, A liquid phase sintering model: application to Si3N4 and WC–Co, Acta Mater, 45, 2995, 10.1016/S1359-6454(96)00378-3

Hernández, 2011, Numerical modelling of crack formation in powder forming processes, Int J Solids Struct, 48, 292, 10.1016/j.ijsolstr.2010.10.002

Chung, 2010, 22B, 323

Petersson, 2005, Rearrangement and pore size evolution during WC–Co sintering below the eutectic temperature, Acta Mater, 53, 1673, 10.1016/j.actamat.2004.12.017

Henrich, 2007, Simulations of the influence of rearrangement during sintering, Acta Mater, 55, 753, 10.1016/j.actamat.2006.09.005

Ohman, 2011

Maximenko, 2012, Direct multi-scale modelling of sintering, J Am Ceram Soc, 95, 2383, 10.1111/j.1551-2916.2012.05083.x

Maksimenko, 2009, Direct multiscale modeling of cold pressing of metal powders, Powder Metall Met Ceram, 48, 145, 10.1007/s11106-009-9119-6

Yin, 2009

Han, 2011, Modelling of effective design of high pressure anvils used for large scale commercial production of gem quality large single crystal diamond, Diam Relat Mater, 20, 969, 10.1016/j.diamond.2011.05.017

Kouadri, 2013, Quantification of the chip segmentation in metal machining: application to machining the aeronautical aluminium alloy AA2024-T351 with cemented carbide tools WC–Co, Int J Mach Tool Manuf, 64, 102, 10.1016/j.ijmachtools.2012.08.006

Li, 2011, Chip morphology of normalized steel when machining in different atmospheres with ceramic composite tool, Int J Refract Met Hard Mater, 29, 384, 10.1016/j.ijrmhm.2011.01.011

Korsunsky, 2010, Residual stress evaluation at the micrometer scale: analysis of thin coatings by FIB milling and digital image correlation, Surf Coat Technol, 205, 2393, 10.1016/j.surfcoat.2010.09.033

Li, 2012, A review of tool wear estimation using theoretical analysis and numerical simulation technologies, Int J Refract Met Hard Mater, 35, 143, 10.1016/j.ijrmhm.2012.05.006

Haddag, 2013, Tool wear and heat transfer analyses in dry machining based on multi-steps numerical modeling and experimental validation, Wear, 302, 1158, 10.1016/j.wear.2013.01.028

List, 2012, Cutting temperature prediction in high speed machining by numerical modelling of chip formation and its dependence with crater wear, Int J Mach Tool Manuf, 54–55, 1, 10.1016/j.ijmachtools.2011.11.009

Bouzakis, 2009, A FEM-based analytical–experimental method for determining strength properties gradation in coatings after micro-blasting, Surf Coat Technol, 203, 2946, 10.1016/j.surfcoat.2009.03.012

Golovchan, 2010, The stress–strain behavior of WC–Co hardmetals, Comput Mater Sci, 49, 593, 10.1016/j.commatsci.2010.05.055

Ferreira, 2009, A study on the mechanical behaviour of WC/Co hardmetals, Int J Refract Met Hard Mater, 27, 1, 10.1016/j.ijrmhm.2008.01.013

Dvornik, 2012, Influence of defects on strength and hardness of submicron WC–8Co–1Cr3C2 hard alloy, Phys Procedia, 23, 73, 10.1016/j.phpro.2012.01.019

McVeigh, 2009, Multiresolution modeling of ductile reinforced brittle composites, J Mech Phys Solids, 57, 244, 10.1016/j.jmps.2008.10.015

Powder Metallurgy Association

Totis, 2010, Development of a dynamometer for measuring individual cutting edge forces in face milling, Mech Syst Signal Process, 24, 1844, 10.1016/j.ymssp.2010.02.010

Totis, 2011, Development of a modular dynamometer for triaxial cutting force measurement in turning, Int J Mach Tools Manuf, 51, 34, 10.1016/j.ijmachtools.2010.10.001

Bakar, 2009, Direct measurement of particle–particle interaction using micro particle interaction analyzer (MPIA), Adv Powder Technol, 20, 455, 10.1016/j.apt.2009.03.007

Gee, 2011, Micro-tribology experiments on engineering coatings, Wear, 271, 2673, 10.1016/j.wear.2011.02.031

Boyd, 2012

Hazell, 2010, Inelastic deformation and failure of tungsten carbide under ballistic-loading conditions, Mater Sci Eng A, 527, 7638, 10.1016/j.msea.2010.08.024

Borgh, 2013, On the three-dimensional structure of WC grains in cemented carbides, Acta Mater, 61, 4726, 10.1016/j.actamat.2013.05.008