Trends in the P/M hard metal industry
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zeiler, 2012
North, 2005, Global trends in hard materials
REACH
Fernández, 1989, Thermodynamic properties of the Co–WC system, Metall Trans, 20A, 935
Fernández Guillermet, 1989, An assessment of the Fe–Ni–W–C phase diagram, Z Metallkd, 80, 83
Gustafson, 1987, A thermodynamic evaluation of the C–Fe–W System, Metall Trans A, 18, 175, 10.1007/BF02825699
Markström, 2005, A revised thermodynamic description of the Co–WC system, J Phase Equilib Diffus, 26, 152, 10.1007/s11669-005-0133-1
Fernandes, 2011, Cemented carbide phase diagrams: a review, Int J Refract Met Hard Mater, 29, 405, 10.1016/j.ijrmhm.2011.02.004
Åkesson, 1982
Kruse, 2001, Experimental study of invariant equilibria in the Co–WC and Co–WC–Me (Me=Ti, Ta, Nb) systems, J Phase Equilib Diffus, 22, 552, 10.1007/s12385-001-0073-3
Frisk, 2008, Effect of Cr and V on phase equilibria in Co–WC based hard metals, Int J Mater Res, 99, 287, 10.3139/146.101632
Kurlov, 2006, Tungsten carbides and WC phase diagram, Inorg Mater, 42, 121, 10.1134/S0020168506020051
Lukas, 2007, Computational thermodynamics
Shi, 2005, Thermo-Calc and DICTRA enhance mat design and processing, Mater Sci Forum, 475–479, 3339, 10.4028/www.scientific.net/MSF.475-479.3339
Andersson, 1990, Fundamentals and applications of ternary diffusion, 153
Ekroth, 2000, Gradient zones in WC–Ti (C, N)–Co-based cemented carbides: experimental study and computer simulations, Acta Mater, 48, 2177, 10.1016/S1359-6454(00)00029-X
Chen, 2012, Chin J Non-Ferrous Met, 22, 1440
García, 2011, Kinetics of formation of graded layers on cemented carbides: experimental investigations and DICTRA simulations, Int J Refract Met Hard Mater, 29, 256, 10.1016/j.ijrmhm.2010.11.003
Frisk, 2013, Applying computational thermodynamics and kinetics to analyze the effect of N in hardmetals
Grearson, 2005, The future of fine grain hard metals
Henjered, 1986, Quantitative microanalysis of carbide/carbide interfaces in WC–Co-base cemented carbides, Mater Sci Technol, 2, 847, 10.1179/mst.1986.2.8.847
Östberg, 2002, Effect of Σ2 grain boundaries on plastic deformation of WC–Co cemented carbides, 85
Weidow, 2010, Grain and phase boundary segregation in WC–Co with small V, Cr or Mn additions, Acta Mater, 58, 3888, 10.1016/j.actamat.2010.03.038
Vicens, 1988, Structural analysis and properties of grain boundaries in hexagonal carbides, J Phys, 49, 271
Vicens, 1994, Cobalt intergranular segregation in WC–Co composites, J Mater Sci, 29, 987, 10.1007/BF00351421
Lay, 2003, Structure and role of the interfacial layers in VC-rich WC–Co cermets, Philos Mag, 83, 1175, 10.1080/1478643031000075759
Hagège, 1986, Structural analysis and properties of grain boundaries in hexagonal carbides, Jpn Inst Met, 27, 163
Kumar, 2006, An analysis of grain boundaries and grain growth in cemented tungsten carbide using orientation imaging microscopy, Metall Mater Trans A, 37, 599, 10.1007/s11661-006-0032-z
Mannesson, 2008, Analysis of WC grain growth during sintering using electron backscatter diffraction and image analysis, Int J Refract Met Hard Mater, 2, 449, 10.1016/j.ijrmhm.2007.10.004
Christensen, 2003, Co-phase penetration of WC (1010)/WC (1010) grain boundaries from first principles, Phys Rev B, 67, 115415, 10.1103/PhysRevB.67.115415
Christensen, 2004, Effects of cobalt intergranular segregation on interface energetics in WC–Co, Acta Mater, 52, 2199, 10.1016/j.actamat.2004.01.013
Lay, 2008, Morphology of WC grains in WC–Co alloys, Mater Sci Eng A, 486, 253, 10.1016/j.msea.2007.09.019
Li, 2011, Theoretical study on the electronic properties and stabilities of low-index surfaces of WC polymorphs, Comput Mater Sci, 50, 939, 10.1016/j.commatsci.2010.10.033
Gao, 2013, On the formation of WC1−x in nanocrystalline cemented carbides, Scr Mater, 68, 108, 10.1016/j.scriptamat.2012.09.016
Götelid, 2000, Influence of O and Co on the early stages of sintering of WC–Co: a surface study by AES and STM, Acta Mater, 48, 4357, 10.1016/S1359-6454(00)00210-X
Zavodinsky, 2011, Ab initio study of the fcc-WC (100) surface and its interaction with cobalt monolayers, Appl Surf Sci, 257, 3581, 10.1016/j.apsusc.2010.11.080
Zavodinsky, 2011, Cobalt layers crystallized on the WC (100) surface: spin-polarized ab initio study, Int J Refract Met Hard Mater, 29, 184, 10.1016/j.ijrmhm.2010.10.005
Egami, 1993, Morphology of vanadium carbide in submicron hardmetals
Taniguchi, 1997, Sintering behavior of VC-doped micro-grained cemented carbide
Jaroenworaluck, 1998, Effects of Cr3C2 and V8C7 on the microstructure and mechanical properties of WC–SiC whisker, Ceram Mater Res, 13, 2450, 10.1557/JMR.1998.0341
Yamamoto, 2000, High resolution transmission electron microscopy study in VC-doped WC–Co compound, Sci Technol Adv Mater, 1, 97, 10.1016/S1468-6996(00)00006-1
Lay, 2002, Location of VC in VC, Cr3C2 codoped WC–Co cermets by HREM and EELS, Int J Refract Met Hard Mater, 20, 61, 10.1016/S0263-4368(01)00071-3
Lay, 2003, Characteristics and origin of clusters in submicron WC–Co cermets, Philos Mag, 83, 2669, 10.1080/1478643031000136094
Kawakami, 2004, Effect of sintering cooling rate on V segregation amount at WC/Co interface in VC-doped WC–Co fine-grained hardmental, J Jpn Soc Powder Powder Metall, 51, 576, 10.2497/jjspm.51.576
Kawakami, 2005, Segregation amount of dopants at WC/Co interface in Cr3C2- and VC+Cr3C2-dopant WC–Co submicro-grained hardmetals, 653
Shatov, 1998, The shape of WC crystals in cemented carbides, Mater Sci Eng A, 242, 7, 10.1016/S0921-5093(97)00509-1
Engqvist, 1998, Microstructure and abrasive wear of binderless carbides, Int J Refract Met Hard Mater, 16, 309, 10.1016/S0263-4368(98)00034-1
Kawakami, 2006, HRTEM microstructure and segregation amount of dopants at WC/Co interfaces in TiC and TaC mono-doped WC–Co submicro-grained hardmetals, J Jpn Soc Powder Powder Metall, 53, 166, 10.2497/jjspm.53.166
Lay, 2006, Structural analysis on planar defects formed in WC platelets in Ti-doped WC–Co, J Am Ceram Soc, 89, 3229, 10.1111/j.1551-2916.2006.01218.x
Weidow, 2011, Grain and phase boundary segregation in WC–Co with TiC, ZrC, NbC or TaC additions, Int J Refract Met Hard Mater, 29, 38, 10.1016/j.ijrmhm.2010.06.010
Yamamoto, 2001, High resolution microscopy study in Cr3C2-doped WC–Co, J Mater Sci, 36, 3885, 10.1023/A:1017953701641
Delanoë, 2004, Cr-rich layer at the WC/Co interface in Cr-doped WC–Co cermets: segregation or metastable carbide?, J Cryst Growth, 270, 219, 10.1016/j.jcrysgro.2004.05.101
Delanoë, 2009, Evolution of the WC grain shape in WC–Co alloys during sintering: cumulated effect of the Cr addition and of the C content, Int J Refract Met Hard Mater, 27, 189, 10.1016/j.ijrmhm.2008.07.010
Elfwing, 2005, Study of solid-state sintered fine-grained cemented carbides, Int J Refract Met Hard Mater, 23, 242, 10.1016/j.ijrmhm.2005.03.006
Delanoë, 2009, Evolution of the WC grain shape in WC–Co alloys during sintering: effect of C content, Int J Refract Met Hard Mater, 27, 140, 10.1016/j.ijrmhm.2008.06.001
Johansson, 2010, Theory of ultrathin films at metal–ceramic interfaces, Phil Mag Lett, 90, 599, 10.1080/09500831003800863
Johansson, 2011, A computational study of thin cubic carbide films in WC/Co interfaces, Acta Mater, 59, 171, 10.1016/j.actamat.2010.09.021
Sugiyama, 2012, Formation of (W, V)Cx layers at the WC/Co interfaces in the VC-doped WC–Co cemented carbide, Int J Refract Met Hard Mater, 30, 185, 10.1016/j.ijrmhm.2011.08.006
Lay, 2012, Interface structure in a WC–Co alloy co-doped with VC and Cr3C2, J Mater Sci, 47, 1588, 10.1007/s10853-011-6156-6
Zavodinsky, 2012, Ab initio study of inhibitors influence on growth of WC crystallites in WC/Co hard alloys, Int J Refract Met Hard Mater, 31, 263, 10.1016/j.ijrmhm.2011.12.006
Johansson, 2012, First-principles study of an interfacial phase diagram in the V-doped WC–Co system, Phys Rev B, 86, 035403, 10.1103/PhysRevB.86.035403
Exner, 1979, Physical and chemical nature of cemented carbides, Int Met Rev, 4, 149
Bounhoure, 2008, Special WC/Co orientation relationships at basal facets of WC grains in WC–Co alloys, J Mater Sci, 43, 892, 10.1007/s10853-007-2181-x
Slabanja, 2009, Energetics and structure of interfaces in WC–Co alloys from first principles calculations
Bounhoure, 2009, Discussion of nonconventional effects in solid-state sintering of cemented carbides, J Am Ceram Soc, 92, 1396, 10.1111/j.1551-2916.2009.02993.x
Schubert, 1981, Phasengleichgewichte in den Systemen Co–Mo–W–C und Ni–Mo–W–C
Upadhyaya, 2001, Material science of cemented carbide — an overview, Mater Des, 22, 483, 10.1016/S0261-3069(01)00007-3
Rudy, 1969, 497
Suetin, 2009, Electronic properties of hexagonal tungsten monocarbide (h-WC) with 3d impurities from first-principles calculations, Physica B, 404, 1887, 10.1016/j.physb.2008.10.032
Weidow, 2011, Transition metal solubilities in WC in cemented carbide materials, J Am Ceram Soc, 94, 605, 10.1111/j.1551-2916.2010.04122.x
Schubert WD. Doped hexagonal tungsten carbide and method to produce the same. WO patent 2012/145773A1. 2012.
Weidow, 2013, Analysis of WC with increased TA doping
Gladyshevskii, 1967, The ternary system W–Cr–C, Invest Akad Nauk SSSR Metall, 1, 190
Tükör, 2009, Formation of WC–Cr-phases during the production of Cr-doped WC powders
Brieseck, 2010, Diffusion and solubility of Cr in WC, J Alloy Comp, 489, 408, 10.1016/j.jallcom.2009.09.137
Qiao, 2008, A novel (W–Al)–C–Co composite cemented carbide prepared by mechanical alloying and hot-pressing sintering, Int J Refract Met Hard Mater, 26, 251, 10.1016/j.ijrmhm.2007.04.002
Tang, 2002, Preparation of W–Al alloys by mechanical alloying, J Alloy Comp, 347, 228, 10.1016/S0925-8388(02)00760-0
Qiao, 2009, Microstructure, thermal stability and mechanical properties of the novel (W1−xAlx)C–Co (x=0.2, 0.33, 0.4, 0.5) cemented carbide, Int J Refract Met Hard Mater, 27, 48, 10.1016/j.ijrmhm.2008.03.002
Suetin, 2008, Structural, elastic and electronic properties and formation energies for hexagonal (W0.5Al0.5)C in comparison with binary carbides WC and Al4C3 from first-principles calculations, Physica B, 403, 2654, 10.1016/j.physb.2008.01.045
Yan, 2004, Synthesis, crystal structure, and density of (W1−xAlx)C, J Solid State Chem, 177, 2265, 10.1016/j.jssc.2004.03.009
Wild, 2000, Lung cancer mortality in a site producing hard metals, Occup Environ Med, 57, 568, 10.1136/oem.57.8.568
Bastian, 2009, Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells in vitro, Environ Health Perspect, 117, 530, 10.1289/ehp.0800121
Richter, 2008, Evaluation of health risks of nano and microparticles, Powder Metall, 51, 8, 10.1179/174329008X286640
Gries, 2007
Prakash, 1993, A review of the properties of WC hardmetals with alternative binder systems, vol. 2
Gille, 2000, Advanced and new grades of WC and binder powder — their properties and application, Int J Refract Met Hard Mater, 18, 87, 10.1016/S0263-4368(00)00002-0
Prakash, 2009, WC hardmetals with iron based binders
J. García, 2013
Mingard, 2011, Some aspects of the structure of cobalt and nickel binder phases in hardmetals, Acta Mater, 59, 2277, 10.1016/j.actamat.2010.12.004
Rong, 2012, Ultrafine WC–Ni cemented carbides fabricated by spark plasma sintering, Mater Sci Eng A, 532, 543, 10.1016/j.msea.2011.10.119
Wittmann, 2002, WC grain growth and grain growth inhibition in nickel and iron binder hardmetals, Int J Refract Met Hard Mater, 20, 51, 10.1016/S0263-4368(01)00070-1
Shatov, 2009, Modeling the effect of flatter shape of WC crystals on the hardness of WC–Ni cemented carbides, Int J Refract Met Hard Mater, 27, 198, 10.1016/j.ijrmhm.2008.07.008
Ren, 2013, Effect of SiC nano-whisker addition on WC–Ni based cemented carbides fabricated by hot-press sintering, Int J Refract Met Hard Mater, 36, 294, 10.1016/j.ijrmhm.2012.10.009
Rong, 2011, Microstructure and mechanical properties of ultrafine WC–Ni–VC–TaC–cBN cemented carbides fabricated by spark plasma sintering, Int J Refract Met Hard Mater, 29, 733, 10.1016/j.ijrmhm.2011.06.004
Aristizabal, 2012, Comparison of the friction and wear behaviour of WC–Ni–Co–Cr and WC–Co hardmetals in contact with steel at high temperatures, Wear, 280–281, 15, 10.1016/j.wear.2012.01.015
Correa, 2010, Microstructure and mechanical properties of WC Ni–Si based cemented carbides developed by powder metallurgy, Int J Refract Met Hard Mater, 28, 572, 10.1016/j.ijrmhm.2010.04.003
Carpenter, 2011, Hardmetal products made from pre-alloyed binder
Guo, 2010, Characterization and properties of MTCVD Ti(C, N) coated cemented carbide substrates with Fe/Ni binder, Int J Refract Met Hard Mater, 28, 238, 10.1016/j.ijrmhm.2009.10.004
Fernandez, 2008, Mechanical characterization of composites prepared from WC powders coated with Ni rich binders, Int J Refract Met Hard Mater, 26, 491, 10.1016/j.ijrmhm.2007.12.001
Guo, 2009, Microstructure and properties of Ti(C, N)–Mo2C–Fe cermets, Int J Refract Met Hard Mater, 7, 781, 10.1016/j.ijrmhm.2009.01.003
Alvaredo, 2013, Influence of carbon content on the sinterability of an FeCr matrix cermet reinforced with TiCN, Int J Refract Met Hard Mater, 36, 283, 10.1016/j.ijrmhm.2012.10.007
Alvaredo, 2012, Microstructural development and mechanical properties of iron based cermets processed by pressureless and spark plasma sintering, Mater Sci Eng A, 538, 28, 10.1016/j.msea.2011.12.107
Bradley Collier, 2012, Spherical indentation damage in TiC–Ni3Al composites, Int J Refract Met Hard Mater, 30, 188, 10.1016/j.ijrmhm.2011.08.008
Habibi Rad, 2012, Investigation of the corrosion behavior of WC–FeAl–B composites in aqueous media, Int J Refract Met Hard Mater, 35, 62, 10.1016/j.ijrmhm.2012.04.005
Suzuki, 1981, The beta-free layer formed near the surface of vacuum-sintered WC–beta-Co alloys containing nitrogen, Trans Jpn Inst Met., 22, 758, 10.2320/matertrans1960.22.758
Nemeth BJ, Grab GP. Preferentially binder enriched cemented carbide bodies and method of manufacture US Patent 4,610,931;1987.
Schwarzkopf, 1988, Kinetics of compositional modification of (W, Ti)C–WC–Co alloy surfaces, Mater Sci Eng A, 105/106, 225, 10.1016/0025-5416(88)90500-9
Fischer UKR, Hartzell ET, Akerman JGH. Cemented carbide body used preferably for rock drilling and mineral cutting. US Patent No. 4,743,515, 1988 and Fischer UKR, Hartzell ET, Akerman JGH. Cemented carbide body with a binder phase gradient and method of making the same. US Patent No. 4,820,482; 1989.
2013, Special issue on functionally graded cemented carbides, Int J Refract Met Hard Mater, 36, 1
García, 2011, Investigations on kinetics of formation of fcc-free surface layers on cemented carbides with Fe–Ni–Co binders, Int J Refract Met Hard Mater, 29, 306, 10.1016/j.ijrmhm.2010.12.007
García, 2012, Influence of Fe–Ni–Co binder composition on nitridation of cemented carbide, Int J Refract Met Hard Mater, 30, 114, 10.1016/j.ijrmhm.2011.07.012
Mohammadpour, 2012, Effect of cobalt replacement by nickel on functionally graded cemented carbonitrides, Int J Refract Met Hard Mater, 30, 42, 10.1016/j.ijrmhm.2011.07.001
Borgh, 2012, Influence of nitrogen gas pressure on the miscibility gap in the Ti–Zr carbonitride system, Int J Refract Met Hard Mater, 32, 11, 10.1016/j.ijrmhm.2011.12.014
García, 2013, Effect of cubic carbide composition and sintering parameters on the formation of wear resistant surfaces on cemented carbides, Int J Refract Met Hard Mater, 36, 66, 10.1016/j.ijrmhm.2011.05.004
Barbatti, 2008, Influence of nitridation on surface microstructure and properties of graded cemented carbides with Co and Ni binders, Surf Coat Technol, 202, 5962, 10.1016/j.surfcoat.2008.06.179
Barbatti, 2006, Influence of binder metal and surface treatment on the corrosion resistance of (W, Ti)C-based hardmetals, Surf Coat Technol, 201, 3314, 10.1016/j.surfcoat.2006.07.135
Gustafson, 1994, Binder-phase enrichment by dissolution of cubic carbides, Int J Refract Met Hard Mater, 12, 129, 10.1016/0263-4368(93)90062-K
Frykholm, 2003, A new labyrinth factor for modelling the effect of binder volume fraction on gradient sintering of cemented carbides, Acta Mater, 51, 1115, 10.1016/S1359-6454(02)00515-3
García, 2011, Experimental investigations and DICTRA simulations on formation of diffusion-controlled fcc-rich surface layers on cemented carbides, Appl Surf Sci, 257, 8894, 10.1016/j.apsusc.2011.05.024
Mohammadpour, 2012, Study of cemented carbonitrides with nickel as binder: experimental investigations and computer calculations, Int J Refract Met Hard Mater, 31, 164, 10.1016/j.ijrmhm.2011.10.011
Janisch, 2013, Nitridation sintering of WC–Ti(C, N)–(Ta, Nb)C–Co hardmetals, Int J Refract Met Hard Mater, 36, 22, 10.1016/j.ijrmhm.2011.12.013
Glühmann, 2013, Functionally graded WC–Ti(C, N)–(Ta, Nb)C–Co hardmetals: metallurgy and performance, Int J Refract Met Hard Mater, 36, 38, 10.1016/j.ijrmhm.2011.12.009
García, 2013, The role of cemented carbide functionally graded outer-layers on the wear performance of coated cutting tools, Int J Refract Met Hard Mater, 36, 52, 10.1016/j.ijrmhm.2011.12.007
Fischer UKR, Hartzell ET, Åkerman JGH Cemented carbide body with increased wear resistance. US Patent No. 5,856,626;1999. & Hartzell ET, Akerman JGH, Fischer UKR. Cemented carbide body used preferably for abrasive rock drilling and mineral cutting. US Patent No. 5,401,461;1995. & Åkerman JGH, Fischer UKR, Hartzell ET. Cemented carbide body with extra tough behavior. US Patent No. 5,453,241;1995.
Guo, 2011, Kinetics of the formation of metal binder gradient in WC–Co by carbon diffusion induced liquid migration, Acta Mater, 59, 4719, 10.1016/j.actamat.2011.04.019
Fan, 2013, Design of cobalt gradient via controlling carbon content and WC grain size in liquid-phase-sintered WC–Co composite, Int J Refract Met Hard Mater, 36, 2, 10.1016/j.ijrmhm.2012.02.006
Konyashin, 2013, Gradient WC–Co hardmetals: theory and practice, Int J Refract Met Hard Mater, 36, 10, 10.1016/j.ijrmhm.2011.12.010
Ren, 2013, A review of cemented carbides for rock drilling: an old but still tough challenge in geo-engineering, Int J Refract Met Hard Mater, 39, 61, 10.1016/j.ijrmhm.2013.01.003
Wang, 2013, Mechanical properties and wear resistance of functionally graded WC–Co, Int J Refract Met Hard Mater, 36, 10, 10.1016/j.ijrmhm.2012.04.011
Yunus, 2009
Wu, 2012, Numerical modelling of suction filling using DEM/CFD, Chem Eng Sci, 73, 231, 10.1016/j.ces.2012.01.048
Bierwisch, 2009, Three-dimensional discrete element models for the granular statics and dynamics of powders in cavity filling, J Mech Phys Solids, 57, 10, 10.1016/j.jmps.2008.10.006
Zadeh, 2010
Henderson, 2001, Micro-mechanical modelling of powder compaction, J Mech Phys Solids, 49, 739, 10.1016/S0022-5096(00)00055-7
Reiterer, 2004, Finite element simulation of cold isostatic pressing and sintering of SiC components, Ceram Int, 30, 177, 10.1016/S0272-8842(03)00086-5
McHugh, 1997, A liquid phase sintering model: application to Si3N4 and WC–Co, Acta Mater, 45, 2995, 10.1016/S1359-6454(96)00378-3
Hernández, 2011, Numerical modelling of crack formation in powder forming processes, Int J Solids Struct, 48, 292, 10.1016/j.ijsolstr.2010.10.002
Chung, 2010, 22B, 323
Petersson, 2005, Rearrangement and pore size evolution during WC–Co sintering below the eutectic temperature, Acta Mater, 53, 1673, 10.1016/j.actamat.2004.12.017
Henrich, 2007, Simulations of the influence of rearrangement during sintering, Acta Mater, 55, 753, 10.1016/j.actamat.2006.09.005
Ohman, 2011
Maximenko, 2012, Direct multi-scale modelling of sintering, J Am Ceram Soc, 95, 2383, 10.1111/j.1551-2916.2012.05083.x
Maksimenko, 2009, Direct multiscale modeling of cold pressing of metal powders, Powder Metall Met Ceram, 48, 145, 10.1007/s11106-009-9119-6
Yin, 2009
Han, 2011, Modelling of effective design of high pressure anvils used for large scale commercial production of gem quality large single crystal diamond, Diam Relat Mater, 20, 969, 10.1016/j.diamond.2011.05.017
Kouadri, 2013, Quantification of the chip segmentation in metal machining: application to machining the aeronautical aluminium alloy AA2024-T351 with cemented carbide tools WC–Co, Int J Mach Tool Manuf, 64, 102, 10.1016/j.ijmachtools.2012.08.006
Li, 2011, Chip morphology of normalized steel when machining in different atmospheres with ceramic composite tool, Int J Refract Met Hard Mater, 29, 384, 10.1016/j.ijrmhm.2011.01.011
Korsunsky, 2010, Residual stress evaluation at the micrometer scale: analysis of thin coatings by FIB milling and digital image correlation, Surf Coat Technol, 205, 2393, 10.1016/j.surfcoat.2010.09.033
Li, 2012, A review of tool wear estimation using theoretical analysis and numerical simulation technologies, Int J Refract Met Hard Mater, 35, 143, 10.1016/j.ijrmhm.2012.05.006
Haddag, 2013, Tool wear and heat transfer analyses in dry machining based on multi-steps numerical modeling and experimental validation, Wear, 302, 1158, 10.1016/j.wear.2013.01.028
List, 2012, Cutting temperature prediction in high speed machining by numerical modelling of chip formation and its dependence with crater wear, Int J Mach Tool Manuf, 54–55, 1, 10.1016/j.ijmachtools.2011.11.009
Bouzakis, 2009, A FEM-based analytical–experimental method for determining strength properties gradation in coatings after micro-blasting, Surf Coat Technol, 203, 2946, 10.1016/j.surfcoat.2009.03.012
Golovchan, 2010, The stress–strain behavior of WC–Co hardmetals, Comput Mater Sci, 49, 593, 10.1016/j.commatsci.2010.05.055
Ferreira, 2009, A study on the mechanical behaviour of WC/Co hardmetals, Int J Refract Met Hard Mater, 27, 1, 10.1016/j.ijrmhm.2008.01.013
Dvornik, 2012, Influence of defects on strength and hardness of submicron WC–8Co–1Cr3C2 hard alloy, Phys Procedia, 23, 73, 10.1016/j.phpro.2012.01.019
McVeigh, 2009, Multiresolution modeling of ductile reinforced brittle composites, J Mech Phys Solids, 57, 244, 10.1016/j.jmps.2008.10.015
Powder Metallurgy Association
Totis, 2010, Development of a dynamometer for measuring individual cutting edge forces in face milling, Mech Syst Signal Process, 24, 1844, 10.1016/j.ymssp.2010.02.010
Totis, 2011, Development of a modular dynamometer for triaxial cutting force measurement in turning, Int J Mach Tools Manuf, 51, 34, 10.1016/j.ijmachtools.2010.10.001
Bakar, 2009, Direct measurement of particle–particle interaction using micro particle interaction analyzer (MPIA), Adv Powder Technol, 20, 455, 10.1016/j.apt.2009.03.007
Gee, 2011, Micro-tribology experiments on engineering coatings, Wear, 271, 2673, 10.1016/j.wear.2011.02.031
Boyd, 2012
Hazell, 2010, Inelastic deformation and failure of tungsten carbide under ballistic-loading conditions, Mater Sci Eng A, 527, 7638, 10.1016/j.msea.2010.08.024