Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts

Nature Materials - Tập 11 Số 6 - Trang 550-557 - 2012
Ram Subbaraman1, Dušan Tripković1, Kee‐Chul Chang1, Dušan Strmčnik1, A. P. Paulikas1, Pussana Hirunsit2, Maria K. Y. Chan2, Jeff Greeley2, Vojislav R. Stamenković1, Nenad M. Marković1
1Materials Science Division, Argonne National Laboratory, Lemont, Illinois-60439, USA
2Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois-60439, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dresselhaus, M. S. & Thomas, I. L. Alternative energy technologies. Nature 414, 332–337 (2001).

Gratzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

Schlapbach, L. & Zuttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).

Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

Lefèvre, M., Proietti, E., Jaouen, F. & Dodelet, J-P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009).

Gasteiger, H. A. & Markovi, N. M. Just a dream—or future reality? Science 324, 48–49 (2009).

Lasia, A. in Handbook of Fuel Cells: Fundamentals, Technology and Applications Vol. 2 (eds Vieistich, W., Lamm, A. & Gasteiger, H. A.) 416 (Wiley, 2003).

Moorhouse, J. (ed.) Modern Chlor-Alkali Technology (Wiley, 2001).

Hoare, J. P. The Electrochemistry of Oxygen (Interscience, 1968).

Kinoshita, K. & Society, E. Electrochemical Oxygen Technology (Wiley, 1992).

Birry, L. & Lasia, A. Studies of the hydrogen evolution reaction on Raney nickel—molybdenum electrodes. J. Appl. Electrochem. 34, 735–749 (2004).

Lasia, A. & Rami, A. Kinetics of hydrogen evolution on nickel electrodes. J. Electroanal. Chem. Interfacial Electrochem. 294, 123–141 (1990).

Birss, V. I. & Damjanovic, A. Oxygen evolution at platinum electrodes in alkaline solutions. J. Electrochem. Soc. 134, 113–117 (1987).

Ardizzone, S., Fregonara, G. & Trasatti, S. ‘Inner’ and ‘outer’ active surface of RuO2 electrodes. Electrochim. Acta 35, 263–267 (1990).

Lyons, M. E. G. & Burke, L. D. Mechanism of oxygen reactions at porous oxide electrodes. Part 1.—Oxygen evolution at RuO2 and RuxSn1–xO2 electrodes in alkaline solution under vigorous electrolysis conditions. J. Chem. Soc. Faraday Trans. 1 83, 299–321 (1987).

Trasatti, S. Electrodes of Conductive Metallic Oxides (Elsevier, 1980).

Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

Sergio, T. Physical electrochemistry of ceramic oxides. Electrochim. Acta 36, 225–241 (1991).

Lyons, M. E. G. & Brandon, M. P. A comparative study of the oxygen evolution reaction on oxidised nickel, cobalt and iron electrodes in base. J. Electroanal. Chem. 641, 119–130 (2010).

Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

Bockris, J. O. M. & Otagawa, T. The electrocatalysis of oxygen evolution on perovskites. J. Electrochem. Soc. 131, 290–302 (1984).

Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

Russell, A. E. & Rose, A. X-ray absorption spectroscopy of low temperature fuel cell catalysts. Chem. Rev. 104, 4613–4636 (2004).

Totir, D., Mo, Y., Kim, S., Antonio, M. R. & Scherson, D. A. In situ Co K-edge X-ray absorption fine structure of cobalt hydroxide film electrodes in alkaline solutions. J. Electrochem. Soc. 147, 4594–4597 (2000).

Pourbaix, M. in Atlas of Electrochemical Equilibria in Aqueous Solutions (ed. Pourbaix, M.) 644 (NACE, 1974).

Campbell, C. T. Bimetallic surface chemistry. Annu. Rev. Phys. Chem. 41, 775–837 (1990).

Clavilier, J., Faure, R., Guinet, G. & Durand, R. Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes. J. Electroanal. Chem. Interfacial Electrochem. 107, 205–209 (1979).

Markovi, N. M. & Ross, P. N. Jr Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117–229 (2002).

Strmcnik, D. et al. Effects of Li+, K+, and Ba2+ cations on the ORR at model and high surface area Pt and Au surfaces in alkaline solutions. J. Phys. Chem. Lett. 2, 2733–2736 (2011).

Ahmed, M. et al. Unprecedented structural sensitivity toward average terrace width: Nafion adsorption at Pt{hkl} electrodes. J. Phys. Chem. C 115, 17020–17027 (2011).

Van der Niet, M. J. T. C., den Dunnen, A., Juurlink, L. B. F. & Koper, M. T. M. Co-adsorption of O and H2O on nanostructured platinum surfaces: Does OH form at steps? Angew. Chem. Int. Ed. 122, 6572–6575 (2010).

Marković, N. M. et al. Effect of temperature on surface processes at the Pt(111)-liquid interface:? Hydrogen adsorption, oxide formation, and CO oxidation? J. Phys. Chem. B 103, 8568–8577 (1999).

Strmcnik, D. S. et al. Unique activity of platinum adislands in the CO electrooxidation reaction. J. Am. Chem. Soc. 130, 15332–15339 (2008).

Schmidt, T. J., Ross, P. N. & Markovic, N. M. Temperature-dependent surface electrochemistry on Pt single crystals in alkaline electrolyte: Part 1: CO oxidation. J. Phys. Chem. B 105, 12082–12086 (2001).

Markovic, N. R. & Ross, P. N. New electrocatalysts for fuel cells from model surfaces to commercial catalysts. Cattech 4, 110–126 (2000).

Rossmeisl, J., Qu, Z. W., Zhu, H., Kroes, G. J. & Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007).

Norskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nature Chem. 1, 37–46 (2009).

Conway, B. E. & Tilak, B. V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 47, 3571–3594 (2002).

Markovic, N. M., Sarraf, S. T., Gasteiger, H. A. & Ross, P. N. Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution. J. Chem. Soc. Faraday Trans. 92, 3719–3725 (1996).

Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Norskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Mater. 5, 909–913 (2006).

Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+/Ni(OH)2/Pt interfaces. Science 334, 1256–1260 (2011).

Henrich, V. E. & Cox, P. A. The Surface Science of Metal Oxides (Cambridge Univ. Press, 1994).

Henderson, M. A. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 46, 1–308 (2002).

Bligaard, T. et al. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224, 206–217 (2004).

Thiel, P. A. & Madey, T. E. The interaction of water with solid surfaces: Fundamental aspects. Surf. Sci. Rep. 7, 211–385 (1987).

Kim, M-S. & Kim, K-B. A study on the phase transformation of electrochemically precipitated nickel hydroxides using an electrochemical quartz crystal microbalance. J. Electrochem. Soc. 145, 507–511 (1998).