Trends in AI inference energy consumption: Beyond the performance-vs-parameter laws of deep learning
Tài liệu tham khảo
McDonald, 2022
Freund, 2019
Hernandez, 2020
Barr, 2019
Leopold, 2019
Amodei, 2018
Gholami, 2021
Canziani, 2017
Li, 2016, Evaluating the energy efficiency of deep convolutional neural networks on cpus and gpus, 477
Anthony, 2020
Thompson, 2020
Rodrigues, 2018, Synergy: An energy measurement and prediction framework for convolutional neural networks on jetson tx1, 375
Cai, 2017, Neuralpower: Predict and deploy energy-efficient convolutional neural networks, 622
Balas, 2019
Park, 2018
Xu, 2018, Scaling for edge inference of deep neural networks, Nat. Electron., 1, 216, 10.1038/s41928-018-0059-3
Bianco, 2018, Benchmark analysis of representative deep neural network architectures, IEEE Access, 6, 64270, 10.1109/ACCESS.2018.2877890
European Environment Information, 2021
Russakovsky, 2015
A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, S.R. Bowman, GLUE: A multi-task benchmark and analysis platform for natural language understanding, in: The Proceedings of ICLR, 2019.
Hernandez, 2020
Schwartz, 2019
Strubell, 2019
Henderson, 2020, Towards the systematic reporting of the energy and carbon footprints of machine learning, J. Mach. Learn. Res., 21, 1
Bommasani, 2021
Tan, 2020
Tan, 2021
Molom-Ochir, 2021, Energy and cost considerations for GPU accelerated AI inference workloads, 1
Paszke, 2016
Cadene, 2016
Sémery, 2019
Albanie, 2016
Coleman, 2017, Dawnbench: An end-to-end deep learning benchmark and competition, Training, 100, 102
Mattson, 2020, Mlperf: An industry standard benchmark suite for machine learning performance, IEEE Micro, 40, 8, 10.1109/MM.2020.2974843
Stojnic, 2021
Sovrasov, 2020
Krizhevsky, 2012, Imagenet classification with deep convolutional neural networks, Adv. Neural Inf. Process. Syst., 25, 1097
Simonyan, 2015
Zhai, 2021
Clark, 2020
Batra, 2018
HajiRassouliha, 2018, Suitability of recent hardware accelerators (dsps, fpgas, and gpus) for computer vision and image processing algorithms, Signal Process., Image Commun., 68, 101, 10.1016/j.image.2018.07.007
Asano, 2009, Performance comparison of fpga, gpu and cpu in image processing, 126
Deng, 2009, Imagenet: A large-scale hierarchical image database, 248
Vaswani, 2017, Attention is all you need, 5998
Hollemans, 2018
Zeiler, 2013
Szegedy, 2014
Howard, 2017
Sandler, 2019
Xie, 2020
Sun, 2020
Iandola, 2020
Ritchie, 2020
Hestness, 2017
Kaplan, 2020
Henighan, 2020
NVIDIA, 2015
Ioffe, 2015
Szegedy, 2015
He, 2015
He, 2015
Chollet, 2015
Szegedy, 2016
Huang, 2018
Chollet, 2017
Xie, 2017
Zhang, 2017
Chen, 2017
Zoph, 2018
Hu, 2019
Liu, 2018
Real, 2019
Mahajan, 2018
Ma, 2018
Yalniz, 2019
Yalniz, 2019
Touvron, 2020
Pham, 2021
Zhang, 2020
Dosovitskiy, 2021
Touvron, 2021
Touvron, 2021
Yuan, 2021
Srinivas, 2021
Brock, 2021
Liu, 2021
Chen, 2021
Touvron, 2021
NVIDIA, 2017
Li, 2020
NVIDIA, 2018
Peters, 2018
Radford, 2018
Devlin, 2019
Radford, 2019
Shoeybi, 2020
Lan, 2020
Xu, 2020
Rosset, 2020
Brown, 2020
Cao, 2021
Z. Tang, Y. Wang, Q. Wang, X. Chu, The impact of gpu dvfs on the energy and performance of deep learning: An empirical study, in: Proceedings of the Tenth ACM International Conference on Future Energy Systems, 2019, pp. 315–325.
NVIDIA, 2022
Harmon, 2019
Lin, 2021, Low-power ultra-small edge ai accelerators for image recognition with convolution neural networks: Analysis and future directions, Electronics, 10, 2048, 10.3390/electronics10172048
NVIDIA, 2019
NVIDIA, 2019
NVIDIA, 2022
PyTorch, 2022
PyTorch, 2022
Kim, 2021, I-bert: Integer-only bert quantization, 5506
