Trends and novel strategies for enhancing lipid accumulation and quality in microalgae

Renewable and Sustainable Energy Reviews - Tập 55 - Trang 1-16 - 2016
Poonam Singh1, Sheena Kumari1, Abhishek Guldhe1, Rohit Misra1, Ismail Rawat1, Faizal Bux1
1Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa

Tóm tắt

Từ khóa


Tài liệu tham khảo

Singh, 2014, Towards a sustainable approach for development of biodiesel from plant and microalgae, Renew Sust Energ Rev, 29, 216, 10.1016/j.rser.2013.08.067

Pulz, 2004, Valuable products from biotechnology of microalgae, Appl Microbiol Biotechnol, 65, 635, 10.1007/s00253-004-1647-x

Sharma, 2011, A critical review on recent methods used for economically viable and eco-friendly development of microalgae as a potential feedstock for synthesis of biodiesel, Green Chem, 13, 2993, 10.1039/c1gc15535k

Wobbe, 2014, Improving the sunlight-to-biomass conversion efficiency in microalgal biofactories, J Biotechnol

Singh, 2015, Sustainable production of biofuels from microalgae using a biorefinary approach, 115

Klok, 2013, Simultaneous growth and neutral lipid accumulation in microalgae, Bioresour Technol, 134, 233, 10.1016/j.biortech.2013.02.006

Jiang, 2012, Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae, Plant Physiol Biochem, 54, 70, 10.1016/j.plaphy.2012.02.012

Li, 2012, Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum, Biomass Bioenerg, 42, 199, 10.1016/j.biombioe.2012.03.010

Park, 2013, Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production, Appl Biochem Biotechnol, 171, 1128, 10.1007/s12010-013-0386-9

Salama, 2014, Enhancement of microalgae growth and fatty acid content under the influence of phytohormones, Bioresour Technol, 172, 97, 10.1016/j.biortech.2014.09.002

Singh, 2015, Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology, Biochem Eng J, 94, 22, 10.1016/j.bej.2014.10.019

Vila, 2012, Promoter trapping in microalgae using the antibiotic paromomycin as selective agent, Marine Drugs, 10, 2749, 10.3390/md10122749

Le Chevanton, 2013, Screening and selection of growth-promoting bacteria for Dunaliella cultures, Algal Res, 2, 212, 10.1016/j.algal.2013.05.003

Larkum, 2012, Selection, breeding and engineering of microalgae for bioenergy and biofuel production, Trends Biotechnol, 30, 198, 10.1016/j.tibtech.2011.11.003

Trentacoste, 2013, Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth, Proc Natl Acad Sci USA, 110, 19748, 10.1073/pnas.1309299110

Tabatabaei, 2011, Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran, Renew Sustain Energ Rev, 15, 1918, 10.1016/j.rser.2010.12.004

Adams, 2013, Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae, Bioresour Technol, 131, 188, 10.1016/j.biortech.2012.12.143

Zhang, 2013, Nitrogen starvation induced oxidative stress in an oil-producing green alga Chlorella sorokiniana C3, PloS One, 8, 69225, 10.1371/journal.pone.0069225

Merchant, 2012, You׳re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation, Curr Opin Biotech, 23, 352, 10.1016/j.copbio.2011.12.001

Sharma, 2012, High lipid induction in microalgae for biodiesel production, Energies, 5, 1532, 10.3390/en5051532

Zhang, 2014, Strategic enhancement of algal biomass, nutrient uptake and lipid through statistical optimization of nutrient supplementation in coupling Scenedesmus obliquus-like microalgae cultivation and municipal wastewater treatment, Bioresour Technol, 171, 71, 10.1016/j.biortech.2014.07.060

Lamers, 2012, Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga, J Biotechnol, 162, 21, 10.1016/j.jbiotec.2012.04.018

Stehfest, 2005, The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae, Plant Physiol Biochem, 43, 717, 10.1016/j.plaphy.2005.07.001

Yu, 2015, Chemicals to enhance microalgal growth and accumulation of high-value bioproducts, Front Microbiol, 6, 56, 10.3389/fmicb.2015.00056

Xin, 2010, Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp, Bioresour Technol, 101, 5494, 10.1016/j.biortech.2010.02.016

Msanne, 2012, Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169, Phytochem, 75, 50, 10.1016/j.phytochem.2011.12.007

Cao, 2014, Significance evaluation of the effects of environmental factors on the lipid accumulation of Chlorella minutissima UTEX 2341 under low-nutrition heterotrophic condition, Bioresour Technol, 152, 177, 10.1016/j.biortech.2013.10.084

Amaro, 2011, Advances and perspectives in using microalgae to produce biodiesel, Appl Energ, 88, 3402, 10.1016/j.apenergy.2010.12.014

Converti, 2009, Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production, Chem Eng Process, 48, 1146, 10.1016/j.cep.2009.03.006

Ji, 2013, Isolation of a novel microalgae strain Desmodesmus sp. and optimization of environmental factors for its biomass production, Bioresour Technol, 148, 249, 10.1016/j.biortech.2013.08.110

Praveenkumar, 2012, Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: evaluation for biodiesel production, Biomass Bioenerg, 37, 60, 10.1016/j.biombioe.2011.12.035

Tao, 2013, Responses in growth, lipid accumulation, and fatty acid composition of four oleaginous microalgae to different nitrogen sources and concentrations, Chin J Oceanol Limnol, 31, 1306, 10.1007/s00343-013-2316-7

Gao, 2013, Nutrient deprivation enhances lipid content in marine microalgae, Bioresour Technol, 147, 484, 10.1016/j.biortech.2013.08.066

Lin, 2011, Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga, Bioresour Technol, 102, 1615, 10.1016/j.biortech.2010.09.008

Qi, 2013, A comparative study of maximal quantum yield of photosystem II to determine nitrogen and phosphorus limitation on two marine algae, J Sea Res, 80, 1, 10.1016/j.seares.2013.02.007

Liang, 2012, Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp, J Appl Phycol, 25, 311, 10.1007/s10811-012-9865-6

Chu, 2014, Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress, Bioresour Technol, 152, 241, 10.1016/j.biortech.2013.11.013

Zhang, 2014, Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control, Protein Cell, 5, 750, 10.1007/s13238-014-0083-7

Yeesang, 2011, Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand, Bioresour Technol, 102, 3034, 10.1016/j.biortech.2010.10.013

Liu, 2008, Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresour Technol, 99, 4717, 10.1016/j.biortech.2007.09.073

Baky Hhae, 2012, Enhancement of lipid accumulation in Scenedesmus obliquus by Optimizing CO2 and Fe3+ levels for biodiesel production, Bioresour Technol, 119, 429, 10.1016/j.biortech.2012.05.104

Sirin, 2013, Potential pre-concentration methods for Nannochloropsis gaditana and a comparative study of pre-concentrated sample properties, Bioresour Technol, 132, 293, 10.1016/j.biortech.2013.01.037

Ren Hy, 2014, Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and EDTA addition, Bioresour Technol, 169, 763, 10.1016/j.biortech.2014.06.062

Plank, 2001, Effect of iron on activity of soybean multi-subunit acetyl-coenzyme A carboxylase, Physiol Planta, 112, 183, 10.1034/j.1399-3054.2001.1120206.x

Gorain, 2013, Effects of calcium, magnesium and sodium chloride in enhancing lipid accumulation in two green microalgae, Environ Technol, 34, 1887, 10.1080/09593330.2013.812668

Huang, 2013, Effects of additional Mg2+ on the growth, lipid production, and fatty acid composition of Monoraphidium sp. FXY-10 under different culture conditions, Ann Microbiol, 64, 1247, 10.1007/s13213-013-0768-9

Ho, 2014, Perspectives on engineering strategies for improving biofuel production from microalgae – a critical review, Biotechnol Adv, 10.1016/j.biotechadv.2014.09.002

Rao, 2007, Effect of salinity on growth of green alga Botryococcus braunii and its constituents, Bioresour Technol, 98, 560, 10.1016/j.biortech.2006.02.007

Rawat, 2013, Biodiesel from microalgae: a critical evaluation from laboratory to large scale production, Appl Energ, 103, 444, 10.1016/j.apenergy.2012.10.004

Wahidin, 2013, The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp, Bioresour Technol, 129, 7, 10.1016/j.biortech.2012.11.032

Breuer, 2013, Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus, Bioresour Technol, 143, 1, 10.1016/j.biortech.2013.05.105

Jiang, 2011, Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2, Appl Energ, 88, 3336, 10.1016/j.apenergy.2011.03.043

Roleda, 2013, Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy, Bioresour Technol, 129, 439, 10.1016/j.biortech.2012.11.043

Pan, 2011, Isolation of thermo-tolerant and high lipid content green microalgae: oil accumulation is predominantly controlled by photosystem efficiency during stress treatments in Desmodesmus, Bioresour Technol, 102, 10510, 10.1016/j.biortech.2011.08.091

Takagi, 2006, Karseno, Yoshida T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells, J Biosci Bioeng, 101, 223, 10.1263/jbb.101.223

Christenson, 2011, Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts, Biotech Adv, 29, 686, 10.1016/j.biotechadv.2011.05.015

Li, 2013, Responses in growth, lipid accumulation, and fatty acid composition of four oleaginous microalgae to different nitrogen sources and concentrations, Chin J Ocean Lim, 31, 1306, 10.1007/s00343-013-2316-7

Chu, 2013, Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency, Bioresour Technol, 134, 341, 10.1016/j.biortech.2013.01.131

Atta, 2013, Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris, Bioresour Technol, 148, 373, 10.1016/j.biortech.2013.08.162

Doan, 2014, Two-stage cultivation of a Nannochloropsis mutant for biodiesel feedstock, J Appl Phycol

Farooq, 2013, Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity, Bioresour Technol, 132, 230, 10.1016/j.biortech.2013.01.034

Xia, 2013, Photoautotrophic outdoor two-stage cultivation for oleaginous microalgae Scenedesmus obtusus XJ-15, Bioresour Technol, 144, 261, 10.1016/j.biortech.2013.06.112

Mujtaba, 2012, Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions, Bioresour Technol, 123, 279, 10.1016/j.biortech.2012.07.057

Ratha, 2013, Modulating lipid accumulation and composition in microalgae by biphasic nitrogen supplementation, Aquaculture, 392–395, 69, 10.1016/j.aquaculture.2013.02.004

Alvarez-Diaz, 2014, Lipid production of microalga Ankistrodesmus falcatus increased by nutrient and light starvation in a two-stage cultivation process, Appl Biochem Biotechnol, 174, 1471, 10.1007/s12010-014-1126-5

Yang, 2015, Lipid accumulation by NaCl induction at different growth stages and concentrations in photoautotrophic two-step cultivation of Monoraphidium dybowskii LB50, Bioresour Technol, 187, 221, 10.1016/j.biortech.2015.03.125

Sun, 2014, Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process, Bioresour Technol, 155C, 204, 10.1016/j.biortech.2013.12.109

Tarakhovskaya, 2007, Phytohormones in algae, Russ J Plant Phys, 54, 163, 10.1134/S1021443707020021

Kiseleva, 2012, Biosynthesis of phytohormones in algae, Russ J Plant Phys, 59, 595, 10.1134/S1021443712050081

Mekhalfi, 2014, Effect of environmental conditions on various enzyme activities and triacylglycerol contents in cultures of the freshwater diatom, Asterionella formosa (Bacillariophyceae), Biochimie, 101, 21, 10.1016/j.biochi.2013.12.004

Bajguz, 2013, Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae), Plant Physiol Biochem, 71, 290, 10.1016/j.plaphy.2013.08.003

Jusoh, 2015, Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase, Phytochem, 111, 65, 10.1016/j.phytochem.2014.12.022

Chen, 2004, Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process, Chemosphere, 57, 187, 10.1016/j.chemosphere.2004.05.044

Luo, 2005, Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS, Chemosphere, 59, 1, 10.1016/j.chemosphere.2004.09.100

Viipsi, 2013, Hydroxy- and fluorapatite as sorbents in Cd(II)-Zn(II) multi-component solutions in the absence/presence of EDTA, J Hazard Mater, 252–253, 91, 10.1016/j.jhazmat.2013.02.034

Cheirsilp, 2011, Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock, New Biotechnol, 28, 362, 10.1016/j.nbt.2011.01.004

Cho, 2015, Enhancing microalgal biomass productivity by engineering a microalgal–bacterial community, Bioresour Technol, 175, 578, 10.1016/j.biortech.2014.10.159

Olguin, 2012, Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery, Biotech Adv, 30, 1031, 10.1016/j.biotechadv.2012.05.001

Do Nascimento, 2013, High lipid productivity of an Ankistrodesmus – Rhizobium artificial consortium, Bioresour Technol, 146, 400, 10.1016/j.biortech.2013.07.085

Zhao, 2014, Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production, Bioresour Technol, 156, 332, 10.1016/j.biortech.2013.12.112

Yen, 2015, The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation, Bioresour Technol, 184, 148, 10.1016/j.biortech.2014.09.113

Teo, 2014, Transesterification of Nannochloropsis oculata microalga׳s oil to biodiesel using calcium methoxide catalyst, Energy, 10.1016/j.energy.2014.07.045

Choi, 2015, LED light stress induced biomass and fatty acid production in microalgal biosystem, Acutodesmus obliquus, Spectrochimica acta Part A, Mol Biomol Spect, 145, 245, 10.1016/j.saa.2015.03.035

Seo, 2015, Enhancing the light utilization efficiency of microalgae using organic dyes, Bioresour Technol, 181, 355, 10.1016/j.biortech.2015.01.031

Seo, 2014, Enhancement of growth and lipid production from microalgae using fluorescent paint under the solar radiation, Bioresour Technol, 173, 193, 10.1016/j.biortech.2014.09.012

Zalogin, 2014, Inhibition of nitrate reductase by azide in microalgae results in triglycerides accumulation, Algal Res, 3, 17, 10.1016/j.algal.2013.11.018

Zalogin, 2014, Azide improves triglyceride yield in microalgae, Algal Res, 3, 8, 10.1016/j.algal.2013.12.002

Kim, 2013, Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A, PloS One, 8, e81978, 10.1371/journal.pone.0081978

Fei, 2009, Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae, Biochem J, 424, 61, 10.1042/BJ20090785

Taoka, 2011, Effect of Tween 80 on the growth, lipid accumulation and fatty acid composition of Thraustochytrium aureum ATCC 34304, J Biosci Bioeng, 111, 420, 10.1016/j.jbiosc.2010.12.010

Pavlic, 2005, Toxicity of surfactants to green microalgae Pseudokirchneriella subcapitata and Scenedesmus subspicatus and to marine diatoms Phaeodactylum tricornutum and Skeletonema costatum, Chemosphere, 61, 1061, 10.1016/j.chemosphere.2005.03.051

Zheng, 2014, Recent advances to improve fermentative butanol production: genetic engineering and fermentation technology, J Biosci Bioeng

Sharon-Gojman, 2015, Advanced methods for genetic engineering of Haematococcus pluvialis (Chlorophyceae, Volvocales), Algal Res, 10, 8, 10.1016/j.algal.2015.03.022

Napier, 2014, Understanding and manipulating plant lipid composition: metabolic engineering leads the way, Curr Opin Plant Biol, 19, 68, 10.1016/j.pbi.2014.04.001

Sarkar, 2015, An overview on biofuel and biochemical production by photosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing, Bioresour Bioproces, 2

De Bhowmick, 2015, Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application—a review, Renew Sust Energ Rev, 50, 1239, 10.1016/j.rser.2015.04.131

O׳Neill, 2012, An exogenous chloroplast genome for complex sequence manipulation in algae, Nucleic acids Res, 40, 2782, 10.1093/nar/gkr1008

Kindle, 1990, High-frequency nuclear transformation of Chlamydomonas reinhardtii, Proc Natl Acad Sci USA, 87

Wijffels, 2013, Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae, Curr Opin Biotechnol, 24, 405, 10.1016/j.copbio.2013.04.004

Misra, 2014, Electrochemical harvesting process for microalgae by using nonsacrificial carbon electrode: a sustainable approach for biodiesel production, Chem Eng J, 255, 327, 10.1016/j.cej.2014.06.010

Voigt, 2014, The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii, Plant Sci, 215–216, 39, 10.1016/j.plantsci.2013.10.011

Niu, 2011, A new inducible expression system in a transformed green alga, Chlorella vulgaris, Gene Mol Res, 10, 3427, 10.4238/2011.October.21.1

Wang, 2007, Transient expression of the GUS gene in a unicellular marine green alga, Chlorella sp. MACC/C95, via electroporation, Biotechnol Bioproc Eng, 12, 180, 10.1007/BF03028646

Niu, 2012, Transformation of diatom Phaeodactylum tricornutum by electroporation and establishment of inducible selection marker, BioTechniques, 10.2144/000113881

Leon-Banares, 2004, Transgenic microalgae as green cell-factories, Trends Biotechnol, 22, 45, 10.1016/j.tibtech.2003.11.003

Potvin, 2010, Strategies for high-level recombinant protein expression in transgenic microalgae: a review, Biotech Adv, 28, 910, 10.1016/j.biotechadv.2010.08.006

Ahmad, 2015, Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2, Plant Biotech J, 13, 540, 10.1111/pbi.12278

Kumar, 2004, Genetic transformation of the green alga—Chlamydomonas reinhardtii by Agrobacterium tumefaciens, Plant Sci, 166, 731, 10.1016/j.plantsci.2003.11.012

Muto, 2013, Establishment of a genetic transformation system for the marine pennate diatom Fistulifera sp. strain JPCC DA0580--a high triglyceride producer, Mar Biotech, 15, 48, 10.1007/s10126-012-9457-0

Cheng, 2012, Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium, Microbiol Res, 167, 179, 10.1016/j.micres.2011.05.003

Rosenberg, 2008, A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution, Curr Opin Biotechnol, 19, 430, 10.1016/j.copbio.2008.07.008

Guo, 2013, Establishment of an efficient genetic transformation system in Scenedesmus obliquus, J Biotech, 163, 61, 10.1016/j.jbiotec.2012.10.020

Vieler, 2012, Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779, PLOS Genet, 8

Radakovits, 2011, Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum, Metabol Eng, 13, 89, 10.1016/j.ymben.2010.10.003

Purton, 2013, Genetic engineering of algal chloroplasts: progress and prospects, Russ J Plant Physiol, 60, 491, 10.1134/S1021443713040146

Gutiérrez, 2012, Chloroplast genetic tool for the green microalgae Haematococcus Pluvialis (Chlorophyceae, Volvocales)1, J Phycol, 48, 976, 10.1111/j.1529-8817.2012.01178.x

Day, 2011, The chloroplast transformation toolbox: selectable markers and marker removal, Plant Biotechnol J, 9, 540, 10.1111/j.1467-7652.2011.00604.x

Joyard, 2010, Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism, Prog Lip Res, 49, 128, 10.1016/j.plipres.2009.10.003

Wang, 2014, Transgenic expression of a bacterial thermophilic amylase in the Chlamydomonas reinhardtii chloroplast to facilitate algal biofuel production, BioEnerg Res, 8, 527, 10.1007/s12155-014-9538-1

Feschotte, 2014, Nannochloropsis genomes reveal evolution of microalgal oleaginous traits, PLoS Genet, 10, e1004094, 10.1371/journal.pgen.1004094

Misra, 2012, Phylogenomic study of lipid genes involved in microalgal biofuel production-candidate gene mining and metabolic pathway analyses, Evol. Bioinform. Online, 8, 545, 10.4137/EBO.S10159

Zhang, 2014, High-efficiency nuclear transformation of the diatom Phaeodactylum tricornutum by electroporation, Mar Genom, 16, 63, 10.1016/j.margen.2013.10.003

Noor-Mohammadi, 2013, Method for assembling and expressing multiple genes in the nucleus of microalgae, Biotechnol Lett

Harwood, 2009, The versatility of algae and their lipid metabolism, Biochimie, 91, 679, 10.1016/j.biochi.2008.11.004

Khozin-Goldberg, 2011, Unraveling algal lipid metabolism: recent advances in gene identification, Biochimie, 93, 91, 10.1016/j.biochi.2010.07.020

Liu, 2013, Triacylglycerol profiling of microalgae Chlamydomonas reinhardtii and Nannochloropsis oceanica, Bioresour Technol, 146, 310, 10.1016/j.biortech.2013.07.088

Fan, 2014, Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors, Biotechnol Biofuel, 10.1186/1754-6834-7-17

Wan M, Jin X, Xia J, Rosenberg JN, Yu G, Nie Z, et al. The effect of iron on growth, lipid accumulation, and gene expression profile of the freshwater microalga Chlorella sorokiniana. Appl Microbiol Biotechol; 2014.

Shin H, Hong S-J, Kim H, Yoo C, Lee H, Choi H-K, et al. Elucidation of the growth delimitation of Dunaliella tertiolecta under nitrogen stress by integrating transcriptome and peptidome analysis. Bioresour Technol; 2015.

Courchesne, 2009, Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches, J Biotechnol, 141, 31, 10.1016/j.jbiotec.2009.02.018

Blatti, 2013, Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel, Curr Opin Chem Biol, 17, 496, 10.1016/j.cbpa.2013.04.007

Liang, 2013, Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology, Prog Lipid Res, 52, 395, 10.1016/j.plipres.2013.05.002

Davis, 2000, Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli, J Biol Chem, 275, 28593, 10.1074/jbc.M004756200

Thelen, 2002, Metabolic engineering of fatty acid biosynthesis in plants, Metabol Eng, 4, 12, 10.1006/mben.2001.0204

Dunahay, 1996, Manipulation of microalgal lipid production using genetic engineering, Appl Biochem Biotechnol, 57–58, 223, 10.1007/BF02941703

Wagner, 2010, Identification and characterization of an acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) gene from the microalga O. tauri, Plant Physiol Biochem, 48, 407, 10.1016/j.plaphy.2010.03.008

Baroukh, 2015, A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production, Metabolic Eng, 30, 49, 10.1016/j.ymben.2015.03.019

Xue, 2015, Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation, Metabolic Eng, 27, 1, 10.1016/j.ymben.2014.10.002

Hsieh, 2012, Accumulation of lipid production in Chlorella minutissima by triacylglycerol biosynthesis-related genes cloned from Saccharomyces cerevisiae and Yarrowia lipolytica, J Microbiol, 50, 526, 10.1007/s12275-012-2041-5

Blatti, 2012, Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions, PloS One, 7, e42949, 10.1371/journal.pone.0042949

Liu, 2013, Lipid metabolism in microalgae distinguishes itself, Curr Opin Botechnol, 24, 300, 10.1016/j.copbio.2012.08.008

Radakovits, 2010, Genetic engineering of algae for enhanced biofuel production, Eukaryot Cell, 9, 486, 10.1128/EC.00364-09

Gonzalez-Fernandez, 2012, Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation, Biotech Adv, 30, 1655, 10.1016/j.biotechadv.2012.07.003

Ho, 2013, Bioethanol production using carbohydrate-rich microalgae biomass as feedstock, Bioresour Technol, 135, 191, 10.1016/j.biortech.2012.10.015

Breuer, 2014, Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (II) evaluation of TAG yield and productivity incontrolled photobioreactors, Biotechnol Biofuel, 7, 70, 10.1186/1754-6834-7-70

Li, 2010, Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii, Biotechnol Bioeng, 107, 258, 10.1002/bit.22807

Parsaeimehr, 2015, Simultaneous improvement in production of microalgal biodiesel and high-value alpha-linolenic acid by a single regulator acetylcholine, Biotechnol Biofuels, 8, 11, 10.1186/s13068-015-0196-0

Nascimento, 2012, Screening microalgae strains for biodiesel production – lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria, BioEnerg Res

Guo, 2014, Special biochemical responses to nitrogen deprivation of filamentous oleaginous microalgae Tribonema sp., Bioresour Technol, 158, 19, 10.1016/j.biortech.2014.01.144

Liua, 2011, Fatty acid production in genetically modified cyanobacteria, Proc Natl Acad Sci USA, 108, 6899, 10.1073/pnas.1103014108

La Russa, 2012, Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii, J Biotech, 162, 13, 10.1016/j.jbiotec.2012.04.006

Henley, 2013, Initial risk assessment of genetically modified (GM) microalgae for commodity-scale biofuel cultivation, Algal Res, 2, 66, 10.1016/j.algal.2012.11.001

Andow, 2006, Assessing environmental risks of transgenic plants, Ecol Lett, 9, 196, 10.1111/j.1461-0248.2005.00846.x

Hlavova, 2015, Improving microalgae for biotechnology-From genetics to synthetic biology, Biotech Adv, 10.1016/j.biotechadv.2015.01.009

Qin, 2012, Advances in genetic engineering of marine algae, Biotechnol Adv, 30, 1602, 10.1016/j.biotechadv.2012.05.004

Guldhe, 2016, Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst, Renew Energ, 85, 1002, 10.1016/j.renene.2015.07.059

Song, 2013, Evaluation of the potential of 10 microalgal strains for biodiesel production, Bioresour Technol, 141, 245, 10.1016/j.biortech.2013.02.024

Xu, 2006, High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters, J Biotechnol, 126, 499, 10.1016/j.jbiotec.2006.05.002

Vijayaraghavan, 2009, Biodiesel production from freshwater algae, Energy Fuels, 23, 5448, 10.1021/ef9006033

Miao, 2006, Biodiesel production from heterotrophic microalgal oil, Bioresour Technol, 97, 841, 10.1016/j.biortech.2005.04.008

Guldhe, 2015, Biocatalytic conversion of lipids from microalgae Scenedesmus obliquus to biodiesel using Pseudomonas fluorescens lipase, Fuel, 147, 117, 10.1016/j.fuel.2015.01.049

Chen, 2012, Fuel properties of microalgae (Chlorella protothecoides) oil biodiesel and its blends with petroleum diesel, Fuel, 94, 270, 10.1016/j.fuel.2011.11.031

Mostafa, 2013, Evaluation of fuel properties for microalgae Spirulina platensis bio-diesel and its blends with Egyptian petro-diesel, Arab J Chem

Talebi, 2013, Fatty acids profiling: A selective criterion for screening microalgae strains for biodiesel production, Algal Res, 2, 258, 10.1016/j.algal.2013.04.003

Halim, 2011, Oil extraction from microalgae for biodiesel production, Bioresour Technol, 102, 178, 10.1016/j.biortech.2010.06.136

Yu, 2012, Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock, Bioresour Technol, 121, 256, 10.1016/j.biortech.2012.07.002

Levine, 2011, Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production, Biomass Bioenerg, 35, 40, 10.1016/j.biombioe.2010.08.035

Jazzar, 2015, A whole biodiesel conversion process combining isolation, cultivation and in situ supercritical methanol transesterification of native microalgae, Bioresour Technol, 190, 281, 10.1016/j.biortech.2015.04.097