Tremolite–calcite veins in the footwall of the Simplon Fault, Antigorio Valley, Lepontine Alps (Italy)
Tóm tắt
The lowermost units of the nappe pile of the Lepontine Alps crop out in the Antigorio valley in the footwall of the Simplon Fault. The whole orthogneiss section of the Antigorio Unit is exposed on both sides of the valley, sandwiched between the Mesozoic metasedimentary sequences of the Baceno unit below and the Tèggiolo unit above. The petrography and mineral composition of tremolite–calcite veins occurring in dolomite marble in both metasedimentary sequences were investigated. Tremolite–calcite (with lesser talc and minor phlogopite) veins have rhythmic banded texture. Banding is due to cyclic differences in modal abundances and fabric of tremolite and calcite. These veins are very similar to those occurring in dolomite rafts within the Bergell granite and it is inferred that they formed by the same “fracture-reaction-seal” mechanism. Veins formed by reaction of a silica-rich aqueous fluid with the host dolomite marble along fractures. According to thermo-barometric calculations, based on electron microprobe analyses, reaction occurred at temperatures between 450 and 490°C and minimum pressure of 2–3 kbar. Such temperature conditions occurred in this footwall region of the Simplon Fault Zone around 15 Ma, during exhumation and cooling of the nappe pile and a transition to brittle behaviour. Aqueous, silica-rich fluids concentrated along fractures, forming tremolite–calcite veins in the dolomite marbles and quartz veins in the orthogneiss.
Tài liệu tham khảo
Anovitz, L. M., & Essene, E. J. (1987). Phase equilibria in the system CaCO3–MgCO3–FeCO3. Journal of Petrology, 28, 389–415.
Axen, G. J., Selverstone, J., & Wawrzyniec, T. (2001). High-temperature embrittlement of extensional Alpine mylonite zones in the midcrustal ductile-brittle transition. Journal of Geophysical Research, 106(B3), 4337–4348.
Berman, R. G. (1988). Internally-consistent thermodynamic data for minerals in the system Na2O–K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2–H2O-CO2. Journal of Petrology, 29, 445–522.
Berman, R. G. (1991). Thermobarometry using multi-equilibrium calculations: a new technique, with petrological applications. Canadian Mineralogist, 29, 833–855.
Bianconi, F. (1971). Geologia e petrografia della regione del Campolungo. Beiträge zur Geologischen Karte der Schweiz, 142.
Bucher, K. (1998). Growth mechanism of metasomatic reaction veins in dolomite marbles from Bergell Alps. Mineralogy and Petrology, 65, 151–171.
Bucher-Nurminen, K. (1981). The formation of metasomatic reaction veins in dolomitic marble roof pendants in the Bergell intrusion (Province Sondrio, Northern Italy). American Journal of Science, 281, 1197–1222.
Bucher-Nurminen, K. (1989). Reaction veins in marble formed by a fracture-reaction-seal mechanism. European Journal of Mineralogy, 1, 701–714.
Campani, M., Mancktelow, N., Seward, D., Rolland, Y., Müller, W., & Guerra, I. (2010a). Geochronological evidence for continuous exhumation through the ductile-brittle transition along a crustal-scale low-angle normal fault (Simplon Fault Zone, Central Alps). Tectonics, 29, TC3002, doi:10.1029/2009TC002582.
Campani, M., Herman, F., & Mancktelow, N. (2010b). Two- and three-dimensional thermal modelling of a low-angle detachment: Exhumation history of the Simplon Fault Zone, central Alps. Journal of Geophysical Research, 115, B10420. doi:10.1029/2009JB007036.
Carmichael, D. M. (1991). Univariant mixed-volatile reactions: Pressure-temperature phase diagrams and reaction isograds. Canadian Mineralogist, 29, 741–754.
Castiglioni, G. (1958). Studio geologico e morfologico del territorio di Baceno e Premia (Val d’Ossola–Alpi Lepontine). Memorie degli Istituti di Geologia e Mineralogia dell’Università di Padova, XX, 2–82.
Cinque, F. (1939). Il « Marmo di Crevola » ed i suoi minerali. Atti Società Italiana Scienze Naturali, 78, 202–223.
Connolly, J. A. D., & Tromsdorff, V. (1991). Petrogenetic grid for metacarbonate rocks: Pressure-temperature phase-diagram projection for mixed-volatile systems. Contributions to Mineralogy and Petrology, 108, 93–105.
Escher, A., Masson, H., & Steck, A. (1993). Nappe geometry in the Western Swiss Alps. Journal of Structural Geology, 15, 501–509.
Forbes, W. C. (1971). Iron content of talc in the system Mg3Si4O10(OH)2–Fe3Si4O10(OH)2. Journal of Geology, 79, 63–74.
Frank, E. (1983). Alpine metamorphism of calcareous rocks along a cross-section in the Central Alps: Occurrence and breakdown of muscovite, margarite and paragonite. Schweizerische Mineralogische und Petrographische Mitteilungen, 63, 37–93.
Goldsmith, J. R., & Newton, R. C. (1969). P-T-X relations in the system CaCO3–MgCO3 at high temperatures and pressures. American Journal of Science, 267A, 160–190.
Grasemann, B., & Mancktelow, N. (1993). Two-dimensional thermal modelling of normal faulting: The Simplon Fault Zone, Central Alps, Switzerland. Tectonophysics, 225, 155–165.
Herwegh, M., & Pfiffner, O.A. (1999). Die Gesteine der Piora-Zone (Gotthard Basistunnel). In: Löw, S. & Wyss, R. (Eds.): Vorerkundung und Prognose der Basistunnels am Gotthard und am Lötschberg. Balkema, Rotterdam, 77–88.
Hetherington, C. J., & Le Bayon, R. (2005). Bulk rock composition: a key to identifying invisible prograde reactions in zoned garnet. Schweizerische Mineralogische und Petrographische Mitteilungen, 85, 57–67.
Keller, L. M., Hess, M., Fügenschuh, B., & Schmid, S. (2005). Structural and metamorphic evolution of the Camughera–Moncucco, Antrona and Monte Rosa units southwest of the Simplon line, Western Alps. Eclogae Geologicae Helvetiae, 98, 19–49.
Kuhn, B. K., Reusser, E., Powell, R., & Günther, D. (2005). Metamorphic evolution of calc- schists in the Central Alps, Switzerland. Schweizerische Mineralogische und Petrographische Mitteilungen, 85, 175–190.
Leake, B. E., Woolley, A. R., Birch, W. D., Burke, E. A. J., Ferraris, G., Grice, J. D., et al. (1997). Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names. The Canadian Mineralogist, 35, 219–246.
Leu, W. (1986). Lithostratigraphie und Tektonik der nordpenninischen Sedimente in der Region Bedretto-Baceno-Visp. Eclogae Geologicae Helvetiae, 79, 769–824.
Mancktelow, N. S. (1985). The Simplon line: A major displacement zone in the western Lepontine Alps. Eclogae Geologicae Helvetiae, 78, 73–96.
Maxelon, M., & Mancktelow, N. S. (2005). Three-dimensional geometry and tectonostratigraphy of the Pennine zone, Central Alps, Switzerland and Northern Italy. Earth-Science Reviews, 71, 171–227.
Mercolli, I., Skippen, G., & Trommsdorff, V. (1987). The tremolite veins of Campolungo and their genesis. Schweizerische Mineralogische und Petrographische Mitteilungen, 67, 75–84.
Pettke, T., Diamond, L. W., & Kramers, J. D. (2000). Mesothermal gold lodes in the north- western Alps: A review of genetic constraints from radiogenic isotopes. European Journal of Mineralogy, 12, 213–230.
Pettke, T., Diamond, L. W., & Villa, I. M. (1999). Mesothermal gold veins and metamorphic devolatilization in the northwestern Alps: The temporal link. Geology, 27(7), 641–644.
Pini, E. (1786). Osservazioni sui feldspati ed altri fossili singolari dell’Italia. Memorie di Matematica e Fisica della Società Italiana di Scienze Naturali, 3, 688–717.
Powell, R., Condliffe, D. M., & Condliffe, E. (1984). Calcite–dolomite geothermometry in the system CaCO3-MgCO3-FeCO3: an experimental study. Journal of Metamorphic Geology, 2, 33–41.
Puhan, D. (1995). Metamorphic evolution of the assemblage tremolite + talc + calcite + dolomite + quartz within a sample of siliceous dolomite from the southern Damara Orogen (Namibia). Contribution to Mineralogy and Petrology, 120, 180–185.
Purdy, J. W., & Stalder, H. A. (1973). K-Ar ages of fissure minerals from the Swiss Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 53, 79–98.
Rice, J. M. (1977). Progressive metamorphism of impure dolomitic limestone in the Marysville aureole, Montana. American Journal of Science, 277, 1–24.
Schardt, H. (1903). Note sur le profil géologique et la tectonique du massif du Simplon comparées aux travaux antérieurs. Eclogae Geologicae Helvetiae, 8, 173–200.
Schmidt, C., & Preiswerk, H. (1905). Geologische Karte der Simplongruppe. Beiträge zur Geologischen Karte der Schweiz, [N.F.] 26, Spezialkarte No. 48.
Skippen, G. B. (1974). An experimental model for low pressure metamorphism of siliceous dolomitic marble. American Journal of Science, 274, 487–509.
Steck, A. (2008). Tectonics of the Simplon massif and Lepontine gneiss dome: deformation structures due to collision between the underthrusting European plate and the Adriatic indenter. Swiss Journal of Geoscience, 101, 515–546.
Steck, A., Bigioggero, B., Dal Piaz, G.V., Escher, A., Martinotti, G., & Masson, H. (1999). Carte géologique des Alpes de Suisse occidentale, 1:100000, Carte géologique spéciale N°123. Service Hydrologique et Géologique National (Berne).
Tindle, A. G., & Webb, P. C. (1994). Probe-Amph: A spreadsheet program to classify microprobe-derived amphibole analyses. Computers and Geosciences, 20, 1201–1228.
Todd, C. S., & Engi, M. (1997). Metamorphic field gradients in the Central Alps. Journal of Metamorphic Geology, 15, 513–530.
Trommsdorff, V. (1966). Progressive Metamorphose kieseliger Karbonatgesteine in den Zentralalpen zwischen Bernina und Simplon. Schweizerische Mineralogische und Petrographische Mitteilungen, 46, 431–460.
Trommsdorff, V., & Skippen, G. (1986). Vapour loss (“Boiling”) as a mechanism for fluid evolution in metamorphic rocks. Contribution to Mineralogy and Petrology, 94, 317–322.
Vance, D., & O’Nions, R. K. (1992). Prograde and retrograde thermal histories from the Central Swiss Alps. Earth and Planetary Science Letters, 114, 113–129.
Walther, J. V. (1983). Description and interpretation of metasomatic phase relations at high pressures and temperatures: 2 Metasomatic reactions between quartz and dolomite at Campolungo, Switzerland. American Journal of Science, 283A, 459–485.
Walther, J. V., & Helgeson, H. C. (1980). Description and interpretation of metasomatic phase relations at high pressures and temperatures: 1. Equilibrium activities of ionic species in nonideal mixtures of CO2 and H2O. American Journal of Science, 280, 575–606.
Wawrzyniec, T., Selverstone, J., & Axen, G. J. (1999). Correlations between fluid composition and deep-seated structural style in the footwall of the Simplon low-angle normal fault, Switzerland. Geology, 27, 715–718.
Zwingmann, H., & Mancktelow, N. (2004). Timing of Alpine fault gauges. Earth and Planetary Science Letters, 223, 415–425.