Trehalose metabolism in plants

Plant Journal - Tập 79 Số 4 - Trang 544-567 - 2014
John E. Lunn1, Ines Delorge2,3, Carlos M. Figueroa4, Patrick Van Dijck2,3, Mark Stitt4
1Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam/Golm, Germany
2Department of Molecular Microbiology Vlaams Instituut voor Biotechnologie Katholieke Universiteit Leuven Kasteelpark Arenberg 31 B‐3001 Leuven Belgium
3Laboratory of Molecular Cell Biology Katholieke Universiteit Leuven Kasteelpark Arenberg 31 B‐3001 Leuven Belgium
4System Regulation, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society

Tóm tắt

Summary

Trehalose is a quantitatively important compatible solute and stress protectant in many organisms, including green algae and primitive plants. These functions have largely been replaced by sucrose in vascular plants, and trehalose metabolism has taken on new roles. Trehalose is a potential signal metabolite in plant interactions with pathogenic or symbiotic micro‐organisms and herbivorous insects. It is also implicated in responses to cold and salinity, and in regulation of stomatal conductance and water‐use efficiency. In plants, as in other eukaryotes and many prokaryotes, trehalose is synthesized via a phosphorylated intermediate, trehalose 6‐phosphate (Tre6P). A meta‐analysis revealed that the levels of Tre6P change in parallel with sucrose, which is the major product of photosynthesis and the main transport sugar in plants. We propose the existence of a bi‐directional network, in which Tre6P is a signal of sucrose availability and acts to maintain sucrose concentrations within an appropriate range. Tre6P influences the relative amounts of sucrose and starch that accumulate in leaves during the day, and regulates the rate of starch degradation at night to match the demand for sucrose. Mutants in Tre6P metabolism have highly pleiotropic phenotypes, showing defects in embryogenesis, leaf growth, flowering, inflorescence branching and seed set. It has been proposed that Tre6P influences plant growth and development via inhibition of the SNF1‐related protein kinase (SnRK1). However, current models conflict with some experimental data, and do not completely explain the pleiotropic phenotypes exhibited by mutants in Tre6P metabolism. Additional explanations for the diverse effects of alterations in Tre6P metabolism are discussed.

Từ khóa


Tài liệu tham khảo

Aghdasi M., 2008, Microarray analysis of gene expression patterns in Arabidopsis seedlings under trehalose, sucrose and sorbitol treatment, Int. J. Plant Prod., 2, 309

10.1104/pp.112.205062

Anselmino O., 1913, Über das Vorkommen von Trehalose in Selaginella lepidophylla, Ber. Deut. Pharm. Ges., 23, 326

10.1038/35048692

10.1111/j.1365-313X.2009.03902.x

10.1104/pp.104.052084

10.1186/1471-2148-6-109

10.1093/molbev/msp241

10.1111/j.1399-3054.2005.00537.x

10.1016/j.plantsci.2005.01.006

10.1038/nature06069

10.1006/bbrc.1999.0469

10.1023/B:PRES.0000011916.67519.58

10.1074/jbc.273.50.33311

10.1074/jbc.M101487200

10.1105/tpc.105.035261

10.1016/0014-5793(93)80191-V

10.1046/j.1365-313X.1998.00063.x

Bonini B.M., 2004, The Mycota: A Treatise on the Biology of Fungi with Emphasis on Systems for Fundamental and Applied Research, 291

10.1104/pp.110.157800

10.1094/MPMI.2002.15.7.693

10.1016/S0021-9258(19)77303-7

10.1186/1746-4811-9-21

10.1105/tpc.010410

10.1007/s00572-010-0309-3

10.1016/j.plantsci.2005.02.026

10.1093/emboj/19.12.2869

10.1093/jxb/erj027

10.1111/nph.12455

10.1038/35081161

10.1104/pp.111.179903

10.1104/pp.111.180422

10.1104/pp.104.039743

10.1371/journal.ppat.1003217

10.1128/JB.00725-09

10.1016/S0176-1617(11)81257-5

10.1046/j.1365-313x.2002.01220.x

10.1016/j.plantsci.2005.02.024

10.1016/S0065-2318(08)60266-8

10.1034/j.1399-3054.1998.1020303.x

10.1094/MPMI-12-11-0326

10.1016/j.tplants.2010.04.004

10.1007/s00425-012-1611-4

10.1105/tpc.105.031229

10.1093/emboj/cdg018

10.1104/pp.96.4.1228

10.1016/j.febslet.2007.07.036

10.1104/pp.111.184820

10.1016/j.pbi.2006.05.014

10.1104/pp.115.1.159

10.1016/j.plaphy.2005.02.013

10.1073/pnas.252637799

10.1016/j.plantsci.2007.07.002

10.1007/BF00194429

10.1111/j.1365-313X.2004.02173.x

10.1074/jbc.M307643200

10.1074/mcp.M500134-MCP200

10.1016/S1360-1385(99)01446-6

10.1104/pp.113.1.181

10.1111/j.1365-313X.2006.02662.x

10.1111/j.1365-313X.2010.04312.x

10.1073/pnas.0914299107

10.1016/j.tplants.2010.12.003

10.1104/pp.124.1.21

10.1111/j.1469-8137.2011.03751.x

10.1111/j.1365-313X.2011.04860.x

10.1111/j.1365-313X.2006.02780.x

10.1126/science.1245114

10.1104/pp.103.024513

10.1007/s00425-012-1826-4

10.1111/j.1365-313X.2010.04217.x

10.1104/pp.112.211391

10.1093/aob/mcp086

10.1111/j.1744-7909.2008.00736.x

10.1094/PHYTO-95-1209

10.1071/BT98062

10.1016/j.plantsci.2006.02.004

Ivakov A.(2011)Metabolic interactions in leaf development in Arabidopsis thaliana. PhD Thesis.University of Potsdam Potsdam Germany.

10.1016/B978-0-12-675403-2.50013-2

10.1104/pp.104.052142

10.1073/pnas.0503410102

10.1186/1471-2229-12-74

10.1007/s00425-005-0071-5

10.1016/j.pbi.2004.03.005

10.1093/jxb/ert474

10.1023/A:1022100404542

10.1016/S1360-1385(01)02125-2

10.1007/s00425-011-1458-0

10.1093/pcp/pcr193

10.1111/j.1469-8137.2007.01983.x

10.1016/j.jplph.2007.05.009

10.1111/j.1399-3054.2008.01162.x

10.1071/FP06315

10.1002/9780470015902.a0021259

10.1071/PP96088

10.1016/S1369-5266(03)00033-5

10.1042/BJ20060083

10.1016/j.envexpbot.2007.11.016

10.1111/j.1469-8137.2011.03735.x

10.1007/978-94-007-1579-0_27

10.1002/9780470988640.ch9

10.1104/pp.118.2.627

10.1104/pp.111.174524

10.1104/pp.113.226787

10.1016/j.pbi.2005.05.015

10.1038/nature06856

10.1007/s00425-007-0579-y

10.1046/j.1365-313X.1999.00417.x

10.1016/S0176-1617(11)81048-5

10.1007/BF00202658

10.1016/S0176-1617(98)80078-3

10.1104/pp.125.2.1086

10.1104/pp.108.129791

10.1111/j.1438-8677.2009.00312.x

10.1126/science.1091811

10.1038/nbt.2515

10.1104/pp.113.220657

10.1016/j.plaphy.2012.11.011

10.4161/psb.26626

10.1093/bioinformatics/bti714

10.1093/mp/sss120

10.1111/j.1365-313X.2006.02979.x

10.1104/pp.112.212258

10.1093/jexbot/52.360.1383

10.1146/annurev.arplant.59.032607.092945

10.4161/psb.5.4.10792

10.1111/j.1467-7652.2004.00053.x

10.1016/S0176-1617(98)80273-3

10.3389/fpls.2011.00070

10.1007/s11103-005-7404-4

10.1105/tpc.104.022616

10.1111/j.1365-313X.2009.04057.x

10.1104/pp.113.223420

10.1104/pp.109.136036

10.1016/j.tplants.2007.03.007

10.1007/s11103-006-9082-2

10.1111/j.1365-3040.2009.01985.x

10.1110/ps.062096606

10.1046/j.1469-8137.2001.00035.x

10.1016/j.phytochem.2007.02.011

10.1007/BF00201629

10.1111/j.1574-6968.2009.01614.x

10.1016/S1369-5266(99)80036-3

10.1007/s004250050069

Romero C., 2002, Plant environmental stress response by trehalose biosynthesis, Curr. Top. Plant Biol., 3, 73

10.1104/pp.81.2.538

10.2174/138920211794520178

10.1007/s00216-012-5928-4

10.1038/nature04725

10.1104/pp.104.047019

10.1073/pnas.1132018100

10.1104/pp.104.039503

10.1038/ng1543

10.1016/j.tplants.2011.02.006

10.7554/eLife.00669

Secks M.E., 1999, Role of trehalose in desiccation tolerance of endophyte‐infected tall fescue, Ark. Agric. Exp. Stn. Res. Ser., 475, 134

10.1046/j.1365-313X.2002.01359.x

10.1111/j.1742-4658.2007.05658.x

10.4161/psb.20066

10.1111/j.1365-313X.2011.04583.x

10.1016/j.pbi.2009.12.002

10.1111/j.1365-3040.2007.01708.x

10.1007/s00425-007-0617-9

10.1111/j.1365-3040.1991.tb01440.x

10.1071/FP06249

Stitt M., 1987, The Biochemistry of Plants, Volume 10: Photosynthesis, 327

10.1007/BF00394774

10.1104/pp.72.3.767

10.1111/j.1365-313X.2010.04142.x

10.1016/j.pbi.2012.03.016

10.1128/AEM.00256-06

10.1094/MPMI-21-7-0958

10.1093/mp/sst127

10.1074/jbc.M709187200

10.1105/tpc.112.106989

10.1093/nar/gks1151

10.1094/PHYTO-07-13-0191-R

10.1186/1471-2229-11-48

10.1111/j.1365-313X.2004.02016.x

10.1105/tpc.003640

10.1046/j.1365-313X.1998.00190.x

10.1007/s004250050554

10.1071/FP04038

10.1104/pp.107.115592

10.1016/j.bbrc.2003.11.128

10.1042/bj20020517

10.1093/mp/ssp114

10.1104/pp.112.201400

10.1104/pp.68.6.1369

10.1104/pp.70.3.686

10.1104/pp.69.6.1247

10.1111/j.1365-313X.2008.03541.x

10.1046/j.1365-313X.1998.00064.x

10.1093/jexbot/52.362.1817

10.1126/science.1230406

10.1104/pp.103.021253

10.1007/s00425-003-1128-y

10.1104/pp.106.081174

10.1038/sj.emboj.7601795

10.1104/pp.111.191908

10.1071/FP03002

10.1093/jxb/ert457

10.1371/journal.pone.0042438

10.7554/eLife.00260

10.7554/eLife.00269

10.1104/pp.119.4.1473

10.1104/pp.108.133934

10.1105/tpc.108.063263